DOI QR코드

DOI QR Code

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology

3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로

  • Lee, Hongyeon (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Donghyun (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 이홍연 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김동현 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2018.11.30
  • Accepted : 2018.12.31
  • Published : 2018.12.30

Abstract

3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.

3D 프린팅 기술은 4차산업 혁명 중 제조업의 혁신적인 기술로서 전망되고 있으며, 현재 바이오 의료 분야를 포함한 다양한 분야에서 활용되고 있다. 본 연구에서는 이러한 3D 프린팅 기술을 이용한 제작 원료에 대한 방사선 차폐능을 평가하고자 몬테카를로 전산모사를 통해 프린팅 원료에 대한 검증을 수행하였다. 현재 범용으로 사용되는 FDM 방식의 3D 프린터에서 이용 가능한 원료들을 대상으로 하였으며, ICRU phan tom과 차폐체를 모의 모사한 후 방사선의 종류 및 에너지에 따른 입자 플루언스 평가를 통해 차폐 효과에 대해 분석하였다. 그 결과, 광자선의 경우 에너지 증가에 따라 차폐 효과는 점차 감소되는 경향을 보였고, 원료별 차폐 효과는 TPU, PLA, PVA, Nylon, ABS 순서로 점차적으로 낮아지는 결과를 나타냈다. 중성자선의 경우, 5~10 mm의 낮은 두께에서 반대로 선속이 증가되는 현상을 보였으나, 일정 두께 이상에서는 유효한 차폐 효과를 나타내었으며, 프린팅 원료별 차폐 효과는 Nylon, PVA, ABS, PLA, TPU 순서로 점차 낮아지는 결과를 보였다.

Keywords

BSSHB5_2018_v12n7_909_f0001.png 이미지

Fig. 1. FDM type 3D Printer(MyD, P250).

BSSHB5_2018_v12n7_909_f0002.png 이미지

Fig. 2. Simulating model for shielding effect evaluation of 3D printing materials.

BSSHB5_2018_v12n7_909_f0003.png 이미지

Fig. 3. Hp(10) Photon fluence according to shielding materials and thickness.

BSSHB5_2018_v12n7_909_f0004.png 이미지

Fig. 4. Hp(0.07) Photon fluence according to shielding materials and thickness.

BSSHB5_2018_v12n7_909_f0005.png 이미지

Fig. 5. Hp(10) Neutron fluence according to shielding materials and thickness.

BSSHB5_2018_v12n7_909_f0006.png 이미지

Fig. 6. Hp(0.07) Neutron fluence according to shielding materials and thickness.

Table 1. Information of FDM 3D printer materials

BSSHB5_2018_v12n7_909_t0001.png 이미지

References

  1. K. T. Kim, S. S. Kang, S. C. Noh, B. J. Jung, C. H. Cho, Y. J. Heo, J. K. Park, "Absorbed Spectrum Comparison of Lead and Tungsten in Continuous X-ray Energy using Monte Carlo Simulation," Journal of the Korean Society of Radiology, Vol. 6, No. 6, pp. 483-487, 2012. https://doi.org/10.7742/jksr.2012.6.6.483
  2. M. J. Bae, H. M. Lee, "A Study on Radiation Shielding Materials for Protective Garments using Monte Carlo Simulation," Journal of the Korean Society for Quality Management, Vol. 43, No. 3, pp.239-252, 2015. https://doi.org/10.7469/JKSQM.2015.43.3.239
  3. K. T. Kim, S. S. Kang, S. C. Noh, B. J. Jung, J. K. Park, "The Study on Design of Customized Radiation Protective Layer for Medical Radiation Dose Reduction," Journal of the Korean Society of Radiology, Vol. 8, No. 6, pp. 333-338, 2014. https://doi.org/10.7742/jksr.2014.8.6.333
  4. H. W. Park, "3D Printing Technology Status and Applications," Journal of Mechanical Science and Technology, Vol. 54, No. 4, pp. 32-35, 2014.
  5. D. S. Koo, The Developmant of Wrist Brace used 3D Printer and 3D Scanner, Department of Clothing & Textiles, The Graduate School Pusan National University, Master thesis, 2016.
  6. http://en.wikipedia.org/wiki/3D_printing
  7. S. Mattsson, M. Soderberg, "Dose Quantities and Units for Radiation Protection," In Radiation Protection in Nuclear Medicine, Springer, Berlin, Heidelberg, pp. 7-18, 2013.
  8. J. Valentin, "Relative Biological Effectiveness (RBE), Quality Factor (Q), and Radiation Weighting Factor (wR): ICRP Publication 92," Annals of the ICRP, Vol. 33, No. 4, pp. 1-121, 2003. https://doi.org/10.1016/S0146-6453(03)00024-1
  9. S. B. Choi, "Development of Application Indicators for the Fabrication of Radiotherapy Auxiliary Devices," Department of Medical imaging engineering, The Graduate School of Bio-Medical Science, Korea University, Master thesis, 2014.
  10. W. K. Oh, "Evaluation of Usefulness and Availability for Orthopedic Surgery using Clavicle Fracture Model Manufactured by Desktop 3D Printer," Journal of Radiological Science and Technology, Vol. 37, No. 3, pp. 203-209, 2014.
  11. S. M. Jung, J. H. Yang, S. H. Lee, J. U. Kim, D. S. Yeom, "A Study on Developing Customized Bolus using 3D Printers," Korean Society for Radiation Therapy, Vol. 27. No. 1. pp. 61-71, 2015.
  12. M. S. Kim, "Development of 3D Printing Patient-specific Phantoms for Dose Verification of Stereotactic Body Radiation Therapy Planning in Patients with Spinal Metastasis," The Graduate School of Bio-Medical Science, Korea University, Master thesis, 2016.
  13. H. G. Kim, J. H. Yoon, S. D. Choi, "Study on 3D Printer Production of Auxiliary Device for Upper Limb for Medical Imaging Test," Journal of Radiological Science and Technology, Vol. 38. No. 4. pp. 389-394, 2015. https://doi.org/10.17946/JRST.2015.38.4.08
  14. K. Y. Jeon, J. D. Lee, S. C. Kang, "3D Printing Industry Status and Market Trend," Korea Evaluation Institute of Industrial Technology, PD Issue Report, Vol. 16, No. 6, 2016.
  15. J. Ceh, T. Youd, Z. Mastrovich, C. Peterson, S. Khan, T. A. Sasser, I. M. Sander, J. Doney, C. Turner, W. M. Leevy, "Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment," Sensors, Vol. 17, No. 3, pp. 459, 2016. https://doi.org/10.3390/s17030459
  16. C. M. Shemelya, A. Rivera, A. T. Perez, C. Rocha, M. Liang, X. YU, C. Kief, D. Alexander, J. Stegeman, H. XIN, R. B. Wicker, E. Macdonald, D. A. Roberson, "Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications," Journal of Electronic Materials, Vol. 44, No. 8, pp. 2598-2607, 2015. https://doi.org/10.1007/s11664-015-3687-7