DOI QR코드

DOI QR Code

항산화와 미백효과를 증진시킨 새로운 Sulforaphane 함유 혼합 조성의 개발

Development of Novel Sulforaphane Contained-composition to Increase Antioxidant and Whitening Effects

  • 투고 : 2018.10.30
  • 심사 : 2018.12.18
  • 발행 : 2018.12.30

초록

본 연구는 새로운 항산화 및 미백 기능성 화장품 성분을 개발하기 위해 기존의 항산화와 미백 기능성 성분으로 알려진 두 가지 성분을 혼합한 새로운 조성을 개발하고, 이를 이용해 항산화 및 미백효과를 알아보고자 하였다. 두 가지 성분은 항산화와 멜라닌 생성억제 기능이 알려진 sulforaphane과 멜라닌 생성 억제 효과가 알려진 PF-3758309이다. 각 성분 및 혼합 조성에 대한 세포독성을 조사하여 세포독성이 나타나지 않는 농도를 결정하였다. 단독 처리 시 sulforaphane는 $10{\mu}M$까지, PF-3758309는 100 nM까지 세포독성이 없다는 것을 확인하였다. 두 화합물 $10{\mu}M$ sulforaphane과 1 nM PF-3758309를 병합 처리 시 세포독성은 없었다. LPS 자극에 의해 생성된 일산화질소는 sulforaphane과 PF-3758309의 병합 처리시 현저히 감소되었다. ${\alpha}$-MSH에 의한 멜라닌 생성 역시 병합 처리에 의해 억제되었다. 화장품 소재로 사용 가능성을 확인하기 위해 혼합 조성시료에 대한 인체적용시험을 실시하였다. 혼합조성 시료는 피부첩포에 의한 안전성 평가는 무자극으로 판정되었고, 피부밝기 증가효과와 피부 멜라닌 침착을 억제함을 확인하였다. 이러한 결과들로 혼합 조성물이 항산화와 미백 기능이 있는 새로운 기능성 화장품 조성으로 개발될 가능성을 확인할 수 있었다.

In this study, we analyzed two components, sulforaphane and PF-3758309 to prove that the mixed composition of them has more effective antioxidant and whitening functions compared to each component. We analyzed the cellular toxicity of each component and also the mixed composition to find the safe concentration level for cell viability. From the single component treatment, we discovered that sulforaphane was safe up to $10{\mu}M$, and PF-3758309 up to 100 nM. Combination treatment of $10{\mu}M$ sulforaphane and 1 nM PF-3758309 did not affect the cell viability. The LPS-stimulated NO generation was significantly reduced by the mixed composition of sulforaphane and PF-3758309. Melanogenesis by ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH) was also inhibited by the mixed composition. In order to confirm the possibility as the cosmetic material, we carried out clinical studies for the mixed composition samples. Skin safety evaluation using patch test was judged to be unstimulated, skin whitening effect was increased, and melanin deposition was suppressed by treatment of mixed composition samples. These results provide us with the opportunity for applying it into the development of new functional cosmetics.

키워드

HJPHBN_2018_v44n4_437_f0001.png 이미지

Figure 1. Effect of sulforaphane, PF-3758309 or sulforaphane+ PF-3758309 on cell viability in RAW 264.7 cells. RAW 264.7 cells (1 × 104) were seeded into 96-well plates and cultured for 24 h. Cells were then treated with increasing concentrations of sulforaphane (SFN) (A), PF -3758309 (PF) (B) or the indicated concentrations of sulforaphane+PF-3758309 (C) for 24 h. Cell viability was measured by the MTT assay.

HJPHBN_2018_v44n4_437_f0002.png 이미지

Figure 3. Effect of sulforaphane, PF-3758309 or sulforaphane+ PF-3758309 on melanin synthesis in B16F10 cells. B16F10 melanoma cells were seeded at 1 × 104 cells/well and cultured for 48 h. Cells were treated with SFN (A) or SFN+ PF (B) in the absence or presence of α-MSH for 24 h. Melanin contents were measured at 490 nm. Arbutin was used as a melanogenesis control. The results were expressed as the mean ± SD from the three independent experiments (*p < 0.05).

HJPHBN_2018_v44n4_437_f0003.png 이미지

Figure 2. Effect of sulforaphane, PF-3758309 or sulforaphane+ PF-3758309 on NO production. RAW 264.7 cells (1 × 104) were seeded into 24-well plates and pre-treated with SFN, PF, SFN+PF, ASA for 30 min and stimulated with or without LPS (1μg/ml) for 18 h. Cells were then treated with SFN (A), PF (B) or SFN+PF (C). The culture media was collected and subjected to Griess assay for measurement of NO generated. The results were expressed as the mean ± SD from the three independent experiments (*p < 0.05).

Table 1. EPA Dermal Classification System

HJPHBN_2018_v44n4_437_t0001.png 이미지

Table 2. Skin Safety Evaluation Using Patch Test

HJPHBN_2018_v44n4_437_t0002.png 이미지

Table 3. Statistical Results of Skin Brightness (V)

HJPHBN_2018_v44n4_437_t0003.png 이미지

Table 4. The MI of Skin Pigmentation

HJPHBN_2018_v44n4_437_t0004.png 이미지

참고문헌

  1. C. Hwa, E. A. Bauer, and D. E. Cohen, Skin biology, Dermatol. ther., 24(5), 464 (2011). https://doi.org/10.1111/j.1529-8019.2012.01460.x
  2. A. A. Ortiz, B. Yan, and J. A. D. Orazio, Ultraviolet radiation aging and the skin: prevention of damage by topical cAMP manipulation, Molecules, 19(5), 6202 (2014). https://doi.org/10.3390/molecules19056202
  3. H. G. Lee, Y. S. Won, E. B. L. Koh, Y. A. Kim, J. E. Kim, Y. J. Kim, C. W. Han, M. W. Choi, J. I. Kim, and Y. J. Jeon, Protective effects of ecklonia cava film on UV B-induced photodamages, Kor. J. Fish. Aquat. Sci., 50(6), 714 (2017). https://doi.org/10.5657/KFAS.2017.0714
  4. H. D. Je, The inhibitory effect of broccoli in cruciferous vegetables derived-sulforaphane on vascular tension, Yakha. Hoeji., 58(4), 223 (2014).
  5. J. W. Fahey and P. Talalay, Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes, Food. Chem. Toxicol., 37(9), 973 (1999). https://doi.org/10.1016/S0278-6915(99)00082-4
  6. S. Boddupalli, J. R. Mein, S. Lakkanna, and D. R. James, Induction of phase2 antioxidant enzymes by broccoli sulforaphane :perspectives in maintaining the antioxidant activity of vitamins A, C, and E, Front. Genet., 3(7), 1 (2012).
  7. A. Wiczk, D. Hofman, G. Konopa, and A. H. Antosiewicz, Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells, Biochim. Biophys. Acta., 1823(8), 1295 (2012). https://doi.org/10.1016/j.bbamcr.2012.05.020
  8. A. Qazi, J. Pal, M. Maitah, M. Fulciniti, D. Pelluru, P. Nanjappa, S. Lee, R. B. Batchu, M. Prasad, C. S. Bryant, S. Rajput, S. Gryaznov, D. G. Beer, D. W. Weaver, N. C. Munshi, R. K. Goyal, and M. A. Shammas, Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy, Transl. Oncol., 3(6), 389 (2010). https://doi.org/10.1593/tlo.10235
  9. S. M. Figueiredo, N. S. Binda, J. A. Nogueira-Machado, S. A. Vieira-Filho, and R. B. Caligiorne, The antioxidant properties of organosulfur compounds (sulforaphane), Recent. Pat. Endocr Metab. Immune. Drug. Discov., 9(1), 24 (2015). https://doi.org/10.2174/1872214809666150505164138
  10. I. Shirasugi, M. Kamada, T. Matsui, Y. Sakakibara, M. C. Liu, and M. Suiko, Sulforaphane inhibited melanin synthesis by regulating tyrosinase gene expression in B16 mouse melanoma cells, Biosci. Biotechnol. Biochem., 74(3), 579 (2010). https://doi.org/10.1271/bbb.90778
  11. B. W. Murray, C. Guo, J. Piraino, J. K. Westwick, C. Zhang, J. Lamerdin, E. Dagostino, D. Knighton, C. M. Loi, M. Zager, E. Kraynov, I. Popoff, J. G. Christensen, R. Martinez, S. E. Kephart, J. Marakovits, S. Karlicek, S. Bergqvist, and T. Smeal, Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth, Proc. Nati. Acad. Sci., 107(20), 9446 (2010). https://doi.org/10.1073/pnas.0911863107
  12. C. Y. Yun, S. T. You, J. H. Kim, J. H. Chung, S. B. Han, E. Y. Shin, and E. G. Kim, p21 activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF, and b-Catenin/MITF pathways, J. Invest. Dermatol., 135(5), 1385 (2015). https://doi.org/10.1038/jid.2014.548
  13. M. H. Park, H. S. Lee, C. S. Lee, S. T. You, D. J. Kim, B. H. Park, M. J. Kang, W. D. Heo, E. Y. Shin, M. A. Schwartz, and E. G. Kim, p21-activated kinase 4 promotes prostate cancer progression through CREB, Oncogene., 32(19), 2475 (2013). https://doi.org/10.1038/onc.2012.255
  14. I. S. An, J. H. Kim, H. S. Yoo, R. Zhang, S. M. Kang, T. B. Choe, T. J. Kwon, S. K. An, and G. Y. Kim, The Inhibition effect of L-cysteine on melanogenesis in B16F10 mouse melanoma cells, Kor. J. Aesthet. Cosmetol., 5(2), 239 (2007).
  15. M. J. Kim, N. Y. Bae, K. B. W. R. Kim, J. H. Park, S. H. Park, Y. J. Cho, and D. H. Ahn, Anti-inflammatory effect of zostera marina ethanoic extract on LPS induced RAW 264.7 cells and mouse model, Kor. Soci. Biotechnol. Bioengin., 30(4), 182 (2015).
  16. Y. J. Kang, A. R. Han, H. Y. Min, J. Y. Hong, E. K. Seo, and S. K. Lee, Inhibitory effects of morachalcone A on lipopolysaccharide- induced nitric oxide production in RAW 264.7 cells, Cancer. Pre. Res., 14(2), 118 (2009).
  17. Y. Liu, S. Fang, X. Li, J. Feng, J. Du, L. Guo, Y. Su, J. Zhou, G. Ding, Y. Bai, S. Wang, H. Wang, and Y. Liu, Aspirin inhibits LPS-induced macrophage activation via the $NF-{\kappa}B$ pathway, Sci. Rep., 7(1), 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  18. D. Kesanakurti, D. Maddirela, Y. K. Banasavadi-Siddegowda, T. H. Lai, Z. Qamri, N. K. Jacob, D. Sampath, S. Mohanam, B. Kaur, and V. K. Puduvalli. A novel interaction of PAK4 with $PPAR{\gamma}$ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma, Oncogene, 14(36), 5309 (2017).