Figure 1. Skin delivery of AH8-FITC. (A) The absorption of AH8-FITC to the dermis after applying indicated doses of AH8-FITC (in aqueous solution) was analyzed. The relative penetrations were calculated compared to the 0.1% AH8-FITC treated group (*p < 0.5, ** P < 0.005). (B) The distribution of AH8-FITC in the skin layers after O/N treatment of the peptide.
Figure 2. Increased skin delivery of AH8-FITC by skin hydrating agents. (A,B) After pretreatment of indicated materials, 0.1% of AH8-FITC were applied on MicropigⓇ skin, The relative penetrations to the dermis were calculated compared to the AH8-FITC treated control group (*p < 0.5).
Figure 3. HA enhanced stratum corneum penetration of AH8-FITC. 0.1% AH8-FITC dissolved in 1% HA solution was applied on MicropigⓇ skin (A). The fluorescent intensity in the epidermis and the dermis was analyzed by using imageJ (B).
Figure 4. Penetration enhancing effect of different molecular weight HA. 0.05% AH8-FITC dissolved in 0.5% of indicated molecular weight HA solution was applied on MicropigⓇ skin for O/N.
Figure 5. Interaction of HA with human stratum corneum. Changes of SC skin hydration (A) and lipid chain structure (B) after 4 h application of 1% HA on the forearm.
References
- M. Witting, A. Boreham, R. Brodwolf, K. Vavrova, U. Alexiev, W. Friess, and S. Hedtrich, Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules, Mol. Pharm., 12(5), 1391 (2016). https://doi.org/10.1021/mp500676e
- C. M. Schoellhammer, D. Blankschtein, and R. Langer, Skin permeabilization for transdermal drug delivery: recent advances and future prospects, Expert Opin. Drug Deliv., 11(3), 393 (2014). https://doi.org/10.1517/17425247.2014.875528
- A. Herwadkar and A. K. Banga, Peptide and protein transdermal drug delivery, Drug Discov. Today Technol., 9(2), e147 (2012). https://doi.org/10.1016/j.ddtec.2011.11.007
- S. H. Lim, Y. Sun, M. T. Thiruvallur, V. Rosa, and L. Kang, Enhanced skin permeation of anti-wrinkle peptides via molecular modification, Sci. Rep., 8(1), 1596 (2018). https://doi.org/10.1038/s41598-017-18454-z
- C. Blanes-Mira, J. Clemente, G. Jodas, A. Gil, G. Fernandez-Ballester, B. Ponsati, L. Gutierrez, E. Perez-Paya, and A. Ferrer-Montiel, A synthetic hexapeptide (argireline) with antiwrinkle activity, Int. J. Cosmet Sci., 24(5), 303 (2002). https://doi.org/10.1046/j.1467-2494.2002.00153.x
- M. P. Lupo and A. L. Cole, Cosmeceutical peptides, Dermatol. Ther., 20(5), 343 (2007). https://doi.org/10.1111/j.1529-8019.2007.00148.x
- Y. Wang, M. Wang, S. Xiao, P. Pan, P. Li, and J. Huo, The anti-wrinkle efficacy of argireline, a synthetic hexapeptide, in Chinese subjects: a randomized, placebo-controlled study, Am. J. Clin. Dermatol., 14(2), 147 (2013). https://doi.org/10.1007/s40257-013-0009-9
- M. E. Kraeling, W. Zhou, P. Wang, and O. A. Ogunsola, In vitro skin penetration of acetyl hexapeptide-8 from a cosmetic formulation, Cutan. Ocul. Toxicol., 34(1), 46 (2015). https://doi.org/10.3109/15569527.2014.894521
- M. Hoppel, G. Reznicek, H. Kahlig, H. Kotisch, G. P. Resch, and C. Valenta, Topical delivery of acetyl hexapeptide-8 from different emulsions: influence of emulsion composition and internal structure, Eur. J. Pharm. Sci., 68, 27 (2015). https://doi.org/10.1016/j.ejps.2014.12.006
- G. Krishnan, M. S. Roberts, J. Grice, Y. G. Anissimov, H. R. Moghimi, and H. A. Benson, Iontophoretic skin permeation of peptides: an investigation into the influence of molecular properties, iontophoretic conditions and formulation parameter, Drug Deliv. Transl. Res., 4(3), 222 (2014). https://doi.org/10.1007/s13346-013-0181-8
- Q. D. Pham, S. Bjorklund, J. Engblom, D. Topgaard, and E. Sparr, Chemical penetration enhancers in stratum corneum-relation between molecular effects and barrier function, J. Control Release., 232, 175 (2016). https://doi.org/10.1016/j.jconrel.2016.04.030
- I. B. Pathan and C. M. Setty, Chemical penetration enhancers for transdermal drug delivery systems, Trop. J. Pharm. Res., 8(2), 173 (2009).
- S. Vikas, S. Seema, S. Gurpreet, A. Rana, and J. Baibhav, Penetration enhancers: a novel strategy for enhancing transdermal drug delivery, Int. Res. J. Pharm., 2(12), 32 (2011).
- T. X. Xiang and B. D. Anderson, Phase structures of binary lipid bilayers as revealed by permeability of small molecules, Biochim. Biophys. Acta., 1370(1), 64 (1998). https://doi.org/10.1016/S0005-2736(97)00244-7
- A. Carruthers and D. L. Melchior, Study of the relationship between bilayer water permeability and bilayer physical state, Biochemistry, 22, 5797 (1983). https://doi.org/10.1021/bi00294a018
- D. T. Downing, Lipid and protein structures in the permeability barrier of mammalian epidermis, J. Lipid Res., 33(3), 301 (1992).
- P. W. Wertz, D. C. Swartzendruber, K. C. Madison, and D. T. Downing, Composition and morphology of epidermal cyst lipids, J. Invest. Dermatol., 89(4), 419 (1987). https://doi.org/10.1111/1523-1747.ep12471781
-
S. Bjorklund, A. Nowacka, J. A. Bouwstra, E. Sparr, and D. Topgaard, Characterization of stratum corneum molecular dynamics by natural-abundance
$^{13}C$ solid-state NMR, PLoS ONE, 8(4), e61889 (2013). https://doi.org/10.1371/journal.pone.0061889 -
S. Stahlberg, B. Skolova, P. K. Madhu, A. Vogel, K. Vavrova, and D. Huster, Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by
$^{2}H$ solid-state NMR spectroscopy, Langmuir., 31(17), 4906 (2015). https://doi.org/10.1021/acs.langmuir.5b00751 - E. H. Mojumdar, Q. D. Pham, D. Topgaard, and E. Sparr, Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum, Sci. Rep., 7, 15712 (2017). https://doi.org/10.1038/s41598-017-15921-5
- S. Bjorklund, J. M. Andersson, Q. D Pham, A. Nowacka, D. Topgaard, and E. Sparr, Stratum corneum molecular mobility in the presence of natural moisturizers, Soft Matter., 10(25), 4535 (2014). https://doi.org/10.1039/C4SM00137K
- J. Voigt and V. R. Driver, Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials, Wound Repair Regen., 20(3), 317 (2012). https://doi.org/10.1111/j.1524-475X.2012.00777.x
- D. Pirard, P. Vereecken, C. Melot, and M. Heenen, Three percent diclofenac in 2.5% hyaluronan gel in the treatment of actinic keratoses: a meta-analysis of the recent studies, Arch. Dermatol. Res., 297(5), 185 (2005). https://doi.org/10.1007/s00403-005-0601-9
- J. Meyer, L. Whitcomb, M. Treuheit, and D. Collins, Sustained in vivo activity of recombinant human granulocyte colony stimulating factor (rHG-CSF) incorporated into hyaluronan, J. Controll. Release., 35(1), 67 (1995). https://doi.org/10.1016/0168-3659(95)00020-9
- J. A. Yang, E. S. Kim, J. H. Kwon, H. Kim, J. H. Shin, S. H. Yun, K. Y. Choi, and S. K. Hahn, Transdermal delivery of hyaluronic acid-human growth hormone conjugate, Biomaterials., 33(25), 5947 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.003
- S. J. Na, S. Y. Chae, S. Lee, K. Park, K. Kim, J. H. Park, I. C. Kwon, S. Y. Jeong, and K. C. Lee, Stability and bioactivity of nanocomplex of TNF-related apoptosis-inducing ligand, Int. J. Pharm., 363(1-2), 149 (2008). https://doi.org/10.1016/j.ijpharm.2008.07.013
- S. H. Lee, S. H. Jun, J. Yeom, S. G. Park, C. K. Lee, and N. G. Kang, Optical clearing agent reduces scattering of light by the stratum corneum and modulates the physical properties of coenocytes via hydration, Skin Res. Technol., 24(3), 371 (2018). https://doi.org/10.1111/srt.12439
- A. Z. Chen, L. Q. Chen, S. B. Wang, Y. Q. Wang, and J. Z. Zha, Study of magnetic silk fibroin nanoparticles for massage-like transdermal drug delivery, Int. J. Nanomedicine., 10, 4639 (2015).