DOI QR코드

DOI QR Code

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga (Department of Mathematics The Gandhigram Rural Institute - Deemed University) ;
  • Palanisamy, Muthukumar (Department of Mathematics The Gandhigram Rural Institute - Deemed University)
  • Received : 2017.01.28
  • Accepted : 2017.09.14
  • Published : 2018.03.31

Abstract

This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

Keywords

References

  1. A. Al-Hussein, Maximum principle for controlled stochastic evolution equations, Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1447-1464.
  2. K. J. Astrom, Introduction to Stochastic Control Theory, Mathematics in Science and Engineering, Vol. 70, Academic Press, New York, 1970.
  3. J.-P. Aubin, Un theoreme de compacite, C. R. Acad. Sci. Paris 256 (1963), 5042-5044.
  4. A. Chadha and S. Nandan Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control. Syst. (2017), 1-28. DOI 10.1007/s10883-016-9348-1.
  5. R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
  6. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
  7. G. Di Blasio, K. Kunisch, and E. Sinestrari, $L^2$-regularity for parabolic partial integro-differential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57. https://doi.org/10.1016/0022-247X(84)90200-2
  8. I. Eliazar and J. Klafter, On the nonlinear modeling of shot noise, Proc. Natl. Acad. Sci. USA 102 (2005), no. 39, 13779-13782. https://doi.org/10.1073/pnas.0506816102
  9. J.-M. Jeong and H.-J. Hwang, Optimal control problems for semilinear retarded functional differential equations, J. Optim. Theory Appl. 167 (2015), no. 1, 49-67. https://doi.org/10.1007/s10957-015-0726-8
  10. J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional-differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346. https://doi.org/10.1023/A:1021714500075
  11. X. J. Li and J. M. Yong, Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications, Birkhauser Boston, Inc., Boston, MA, 1995.
  12. X. Mao, Stochastic Differential Equations and Applications, second edition, Horwood Publishing Limited, Chichester, 2008.
  13. F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM J. Control Optim. 47 (2008), no. 1, 251-300. https://doi.org/10.1137/050632725
  14. Q. Meng and P. Shi, Stochastic optimal control for backward stochastic partial differential systems, J. Math. Anal. Appl. 402 (2013), no. 2, 758-771. https://doi.org/10.1016/j.jmaa.2013.01.053
  15. S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim. 27 (1993), no. 2, 125-144. https://doi.org/10.1007/BF01195978
  16. C. Rajivganthi and P. Muthukumar, Almost automorphic solutions for fractional stochastic differential equations and its optimal control, Optimal Control Appl. Methods 37 (2016), no. 4, 663-681. https://doi.org/10.1002/oca.2186
  17. C. Rajivganthi, K. Thiagu, P. Muthukumar, and P. Balasubramaniam, Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps, Appl. Math. 60 (2015), no. 4, 395-419. https://doi.org/10.1007/s10492-015-0103-9
  18. M. Rockner, R. Zhu, and X. Zhu, Existence and uniqueness of solutions to stochastic functional differential equations in infinite dimensions, Nonlinear Anal. 125 (2015), 358-397. https://doi.org/10.1016/j.na.2015.05.019
  19. J. Shi, Necessary conditions for optimal control of forward-backward stochastic systems with random jumps, Int. J. Stoch. Anal. 2012 (2012), Art. ID 258674, 50 pp.
  20. J. Shi, Optimal control for stochastic differential delay equations with Poisson jumps and applications, Random Oper. Stoch. Equ. 23 (2015), no. 1, 39-52.
  21. A. Shukla, U. Arora, and N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput. 49 (2015), no. 1-2, 513-527. https://doi.org/10.1007/s12190-014-0851-9
  22. B. Song, Y. Zhang, J. H. Park, and H. Huang, $L_2-L-\infty}$ filtering for stochastic systems driven by Poisson processes and Wiener processes, Appl. Math. Comput. 276 (2016), 407-416.
  23. P. Tamilalagan and P. Balasubramaniam, The solvability and optimal controls for fractional stochastic differential equations driven by Poisson jumps via resolvent operators, Appl. Math. Optim. (2016), 1-20. DOI:10.1007/s00245-016-9380-2.
  24. V. M. Ungureanu, Optimal control for infinite dimensional stochastic differential equations with infinite Markov jumps and multiplicative noise, J. Math. Anal. Appl. 417 (2014), no. 2, 694-718. https://doi.org/10.1016/j.jmaa.2014.03.052
  25. Y. Xu and H. Wang, Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control, Abstr. Appl. Anal. 2013, Art. ID 948782, 7 pp.
  26. Y. Xu, H. Wang, D. Liu, and H. Huang, Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations, J. Vib. Control 21 (2015), no. 3, 435-448. https://doi.org/10.1177/1077546313486283
  27. J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM J. Control Optim. 48 (2010), no. 6, 4119-4156. https://doi.org/10.1137/090763287
  28. J. Yong and X. Y. Zhou, Stochastic controls, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
  29. Z. Yu, The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls, Automatica J. IFAC 48 (2012), no. 10, 2420-2432. https://doi.org/10.1016/j.automatica.2012.06.082
  30. J. Zhou, Infinite horizon optimal control problem for stochastic evolution equations in Hilbert spaces, J. Dyn. Control Syst. 22 (2016), no. 3, 531-554. https://doi.org/10.1007/s10883-015-9307-2
  31. J. Zhou and B. Liu, Optimal control problem for stochastic evolution equations in Hilbert spaces, Internat. J. Control 83 (2010), no. 9, 1771-1784. https://doi.org/10.1080/00207179.2010.495161