DOI QR코드

DOI QR Code

Effect of Eleutherococcus senticosus supplementation on laccase and cellulase activity of Ganoderma lucidum

가시오가피 첨가가 영지버섯의 라카아제 및 셀룰라아제 효소 활성에 미치는 영향

  • Kim, Hong-Il (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Jeong, Yong-Un (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University) ;
  • Lee, Chang-Soo (Department of Integrated Biosciences, College of Biomedical and Health Science, Konkuk University)
  • 김홍일 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 정용운 (건국대학교 의료생명대학 바이오융합과학부) ;
  • 이창수 (건국대학교 의료생명대학 바이오융합과학부)
  • Received : 2018.08.31
  • Accepted : 2018.11.12
  • Published : 2018.12.31

Abstract

The aim of this study is to investigate the effect of Eleutherococcus senticosus (ES) on the laccase and cellulase activity of Ganoderma lucidum mycelia. Following the addition of ES, the laccase activity of Ganoderma mushroom mycelia was found to be 0.84-2.18 times, 0.61-2.37 times, and 0.78-2.17 times the activity of mycelia treated with sawdust in Yeongji-1 (Y1; ASI-7004), Yeongji-2 (Y2; ASI-7071), and nokgak (GN; ASI-7013), respectively, with the laccase activity of Y2 being the highest at 0.947 U/min. Using the Congo-red assay, a wider clear zone was formed because of the CMCase activity of mycelia treated with ES than that of mycelia treated with sawdust. Cellulase activity was found to be 1.84-2.24 times, 1.77-1.87 times, and 2.74-2.81 times that of mycelia treated with sawdust in Y1, Y2, and GN, respectively, with the cellulase activity of GN being the highest at 0.172 U/min. However, the addition of ES did not affect the growth of G. lucidum mycelia.

가시오가피의 첨가는 영지버섯 균사체를 이용한 분비 단백질 라카아제 및 셀룰라아제의 생산량을 효율적으로 증가시켰다. 영지버섯 균사체의 생장률 측정에서 가시오가피의 첨가는 영지버섯 균사의 생장률이 톱밥에 비해 절반 수준에 밖에 못미치는 결과를 나타내었다. 반면에 영지버섯 균사의 분비 단백질인 라카아제와 셀룰라아제의 양을 증가시키는데 톱밥에 비해 큰 효과가 있음을 확인할 수 있었다. 가시오가피가 첨가된 배양액에서의 라카아제 활성은 톱밥이 첨가된 배양액에서보다 영지 1호, 영지 2호 및 녹각 영지에서 0.61~2.37배 증가하였고, 이 중에서도 영지 2호는 0.947 U/min으로 라카아제 활성이 가장 높게 평가되었다. 셀룰라아제 활성 평가에서는 가시오가피가 첨가된 배양액에서의 셀룰라아제 활성은 톱밥이 첨가된 배양액에서보다 영지 1호, 영지 2호 및 녹각 영지에서 1.77~2.81배 증가하였고, 이 중에서도 영지 1호 및 영지 2호에 비해 녹각 영지에서 0.172 U/min으로 셀룰라아제 활성이 가장 높게 평가되었다. 따라서 가시오가피의 첨가가 영지버섯 균사의 분비 단백질 생산을 증가시키는데 유용한 소재로 사료된다.

Keywords

BSHGBD_2018_v16n4_347_f0001.png 이미지

Fig 1. Determination of laccase activity in G. lucidum (Y1, Y2, GN) culture supernatants supplemented different concentrations(2%, 4%) of Eleutherococcus senticosus(ES) and sawdust(SD) supernatants. (A): Zymogram of laccase isoenzymes in culture supernatants of G. lucidum, (B): ELISA assay.

BSHGBD_2018_v16n4_347_f0002.png 이미지

Fig 2. Examination of cellulase activity in G. lucidum (Y1, Y2, GN) culture supernatants supplemented different concentrations(2%, 4%) of Eleutherococcus senticosus(ES) and sawdust(SD) supernatants. (A): cellulase activity by congo-red staining, (B): ELISA assay

BSHGBD_2018_v16n4_347_f0003.png 이미지

Fig 3. Growth rate of Ganoderma lucidum by addition of Eleutherococcus senticosus(ES) and sawdust(SD). (A):Yeongji-1(Y1;ASI-7004), (B):Yeongji-2(Y2;ASI-7071), (C):Antler-type(GN;ASI-7013).

References

  1. Baldrian P, Valasova V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  2. Bushwell JA. 1998. Production of lignocellulolytic enzymes by edible mushrooms and their role in substrate utilization, pp. 1-5. Kuala Lumpur, Icro Unesco University. Malaya.
  3. Inacio FD, Ferreira RO, de Araujo CAV, Peralta RM, de Souza CGM. 2015. Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quel. Adv Microbiol 5: 1-8. https://doi.org/10.4236/aim.2015.51001
  4. Kim JW, Kim HI, Kim JH, Kwon OC, Son ES, Lee CS, Park YJ. 2016. Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum. Int J Mol Sci 17: 1798. https://doi.org/10.3390/ijms17111798
  5. Kwon OC, Park YJ, Kim HI, Kong WS, Cho JH, Lee CS. 2016. Taxonomic position and species identity of the cultivated yeongji 'Ganoderma lucidum' in korea. mycobiology 44: 1-6. https://doi.org/10.5941/MYCO.2016.44.1.1
  6. Li G, Liu X, Yuan L. 2017. Improved laccase production by funalia trogii in ansorbent fermentation with nutrient carrier. J Biosci Bioeng 124: 381-385. https://doi.org/10.1016/j.jbiosc.2017.05.002
  7. Lim SH, Kang HW. 2016. Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi. J mushroom sci 14: 51-58. https://doi.org/10.14480/JM.2016.14.2.51
  8. Liu X, Yuan JP, Chung CK, Chen XJ. 2002. Antitumor activity of the sporoderm-broken germinating spores of Ganoderma lucidum. Cancer Lett 182: 155-161. https://doi.org/10.1016/S0304-3835(02)00080-0
  9. Moncalvo JM. 2000. Systematics of ganoderma, pp. 23-45, In Flood J, Bridge PD, Holderness M(ed.), Ganoderma diseases of perennial crops, CABI Press. Wallingford United kingdom.
  10. Otjen L, Blanchette R, Effland M, Leatham G. 1987. Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41: 343-349. https://doi.org/10.1515/hfsg.1987.41.6.343
  11. Park YJ, Nam JY, Yoon DE, Kwon OC, Kim HI, Yoo YB, Kong WS, Lee CS. 2013. Comparison of anti-inflammatory, antioxidant and anti-allergic effects of Ganoderma species mycelial extracts. J mushroom sci 11: 111-115. https://doi.org/10.14480/JM.2013.11.2.111
  12. Park YJ, Yoon DE, Kim HI, Kwon OC, Yoo YB, Kong WS, Lee CS. 2014. Overproduction of laccase by the white-rot fungus Pleurotus ostreatus using apple pomace as inducer. mycobiology 42: 193-197. https://doi.org/10.5941/MYCO.2014.42.2.193
  13. Wasser SP, Weis AL. 1999. Medicinal properties of substances occurring in higher basidiomycete mushrooms: current perspectives (Review). Int J Med Mushrooms 1: 31-62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30