DOI QR코드

DOI QR Code

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate

고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름

  • Lee, Seong Tae (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Chi Heon (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyo Tae (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology)
  • 이성태 (한국세라믹기술원 나노융합소재센터) ;
  • 김치헌 (한국세라믹기술원 나노융합소재센터) ;
  • 김효태 (한국세라믹기술원 나노융합소재센터)
  • Received : 2018.11.26
  • Accepted : 2018.12.13
  • Published : 2018.12.31

Abstract

High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

최근 고집적 고출력 전자 패키지의 효율적인 열전달을 위한 기판 및 방열소재로서 절연성 고열전도 필름의 수요가 커지고 있어, 알루미나, 질화알루미늄, 질화보론, 탄소나노튜브 및 그래핀 등의 고열전도 필러소재를 사용한 고방열 복합소재에 대한 많은 연구가 이루어지고 있다. 그 중에서도 육방정 질화보론(h-BN) 나노시트가 절연성 고열전도 필러 소재로서 유력한 후보 물질로 선택되고 있다. 본 연구는 이 h-BN 나노시트와 PVA로 된 세라믹/폴리머 복합체 필름의 방열특성 향상에 관한 것이다. h-BN 나노시트는 h-BN 플레이크 원료 분말을 유기용매를 사용한 볼밀링과 초음파 처리에 의한 물리적 박리공정으로 만들었으며, 이를 사용한 h-BN/PVA 복합 필름을 제조한 결과 성형된 복합필름의 면방향과 두께방향 열전도도는 50 vol%의 필러함량에서 각각 $2.8W/m{\cdot}K$$10W/m{\cdot}K$의 높은 열전도도가 나타났다. 이 복합필름을 PVA의 유리전이온도 이상에서 일축 가압하여 h-BN 판상분말의 얼라인먼트를 향상시킴으로써 면방향 열전도도를 최대 $13.5W/m{\cdot}K$까지 증가시킬 수 있었다.

Keywords

MOKRBW_2018_v25n4_95_f0001.png 이미지

Fig. 1. Schematic illustration of high power LED package.

MOKRBW_2018_v25n4_95_f0002.png 이미지

Fig. 2. Schematic illustration of transverse mode (Kz) and inplane mode (Kxy) thermal conductivities (a) for single h- BN particle, (b) and (c) for h-BN/PVA composite film.

MOKRBW_2018_v25n4_95_f0003.png 이미지

Fig. 4. TG/DSC data of PVA for the compression of h-BN/PVA composite film.

MOKRBW_2018_v25n4_95_f0004.png 이미지

Fig. 5. Effect of compression on the thermal conductivity of h-BN/PVA composites: (a) transverse mode and (b) in-plane mode.

MOKRBW_2018_v25n4_95_f0005.png 이미지

Fig. 7. FE-SEM micro-images of (a) un-compressed and (b)compressed 40 vol% h-BN/PVA composite films (cross-sectional view).

MOKRBW_2018_v25n4_95_f0006.png 이미지

Fig. 3. (a) Transverse mode (Kz) and (b) in-plane mode (Kxy) thermal conductivities of h-BN/PVA composite films with h-BN filler contents.

MOKRBW_2018_v25n4_95_f0007.png 이미지

Fig. 6. (a) Schematic illustration of few layered h-BN nanosheet powder and (b) XRD patterns of h-BN/PVA composite films with and without compression.

References

  1. A. Miric, and P. Dietric, "Inorganic substrates for power electronics applications" Heraeus Deutschland GmbH and Co., KG 63450 Hanau Germany, (March 2015) from https://www.heraeus.com
  2. H. E. Dehaghani, and M. Nazempour, "Smart Nanoparticles Technology", Abbass Hashim, Eds., pp.520-540, IntechOpen, London (2012).
  3. H. T. Kim, "High Thermal Conductivity Ceramics and Their Composites for Thermal Management of Integrated Electronic Packaging", in Heat Transfer-Models, Methods and Applications, Konstantin Volkov, Eds., pp.333-359, IntechOpen, London (2018).
  4. H. W. Shin, H. S. Lee, J. H. Bang, S. H. Yoo, S. B. Jung, and K. D. Kim, "Variation of Thermal Resistance of LED Module Embedded by Thermal Via", J. Microelectr. Packag. Soc., 17(4), 95 (2010).
  5. J. G. Kim, J. Y. Jeong, J. H. Ju, S. H. Park, and Y. R. Cho, "Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction", J. Microelectron. Packag. Soc., 23(4), 87 (2016). https://doi.org/10.6117/kmeps.2016.23.4.087
  6. S. Kemaloglu, G. Ozkoc, and A. Aytac, "Thermally Conductive Boron Nitride/SEBS/EVA Ternary Composites: Processing and Characterization", Polymer Composites, 31(8), 1398 (2010). https://doi.org/10.1002/pc.20925
  7. J. P. Hong, S. W. Yoon, T. S. Hwang, Y. K. Lee. S. H. Won, and J. D. Nam, "Interphase control of boron nitride/epoxy composites for high thermal conductivity", Korea-Australia Rheology Journal, 22(4), 259 (2010).
  8. Y. Xu, and D. D. L. Chung, "Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxymatrix composites by particle surface treatments", Composites Interfaces, 7(4), 243 (2000). https://doi.org/10.1163/156855400750244969
  9. X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, and Y. Bando, "Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties", Nanoscale Research Letters, 7(1), 662 (2012). https://doi.org/10.1186/1556-276X-7-662
  10. W. L. Song. P. Wang, L. Cao, A. Anderson, M. J. Mezani, A. J. Farr, and Y. P. Sun, "Polymer/boron nitride nanocomposite materials for superior thermal transport performance", Angew. Chem. Int. ed., 51(26), 6498 (2012). https://doi.org/10.1002/anie.201201689
  11. Z. Lin, A. Mcnamara, Y. Liu, K. S. Moon, and C. P. Wong, "Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation", Composites Science and Technology, 90, 123 (2014). https://doi.org/10.1016/j.compscitech.2013.10.018
  12. H. L. Hong, J. U. Kim, and T. I. Kim, "Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite", Polymers, 9(9), 413 (2017). https://doi.org/10.3390/polym9090413
  13. C. Pan, J. Zhang, K. Kou, Y. Zhang, and G. Wu, "Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride", Int. J. Heat and mass Transfer, 120, 1 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.015
  14. Z. Lin, Y. Liu, S. Raghavan, K. S. Moon, S. K. Sitaraman, and C. P. Wong, "Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation", ACS Appl. Mater. Interfaces., 5(15), 7633 (2013). https://doi.org/10.1021/am401939z

Cited by

  1. 이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성 vol.27, pp.4, 2018, https://doi.org/10.6117/kmeps.2020.27.4.025