DOI QR코드

DOI QR Code

Improvement of Electrochemical Reduction Characteristics of Carbon Dioxide at Porous Copper Electrode using Graphene

그래핀을 이용한 다공성 구리 전극의 전기화학적 이산화탄소 환원 능력 향상

  • Bang, Seung Wan (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Rho, Hokyun (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Kang, Sung-Ju (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 방승완 (전남대학교 화학공학부) ;
  • 노호균 (전남대학교 화학공학부) ;
  • 배효정 (전남대학교 광전자융합기술연구소) ;
  • 강성주 (전남대학교 화학공학부) ;
  • 하준석 (전남대학교 화학공학부)
  • Received : 2018.12.14
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

We studied graphene synthesis to porous Cu to improve the characteristics of carbon dioxide reduction of cu. Cu powders were formed through Thermal Chemical Vapor Deposition(TCVD) to Porous Cu/Graphene structures synthesized with graphene. As a result of electrochemical experiments using a 0.1 M $KHCO_3$ electrolyte at an applied potential of -1.0 V to -1.4 V, the current density of Porous Cu/Graphene was 1.8 times higher than that of Porous Cu. As a result of evaluating the product, CO and $H_2$ were generated to Porous Cu electrode. On the other hand, the product of porous Cu/Graphene produced CO, $CH_4$ and $C_2H_4$. It is considered that the graphene causes longer carbon dioxide adsorption time, which means that the intermediates formed during the reaction remain on the electrode surface for a longer time. As a result, it can be concluded that the production reaction of the C2 compound could be continuously performed.

본 연구는 구리의 이산화탄소 환원 촉매 특성을 향상시키기 위해 전극 촉매 물질인 다공성 구리에 그래핀을 적용하였다. Thermal Chemical Vapor Deposition(TCVD)법을 이용하여 직접적으로 그래핀이 혼합된 다공성 구리를 제조하였다. 0.1 M $KHCO_3$ 전해액을 사용하여, -1.0 V ~ -1.4 V의 인가전위로 전기화학 실험을 수행한 결과, 그래핀이 혼합된 다공성 구리 전극의 전류 밀도는 다공성 구리에 비해 1.8 배 이상 증가하였다. 생성물을 평가한 결과, 다공성 구리 전극에서 CO와 $H_2$만 생성된 반면 그래핀이 포함된 다공성 구리의 생성물은 CO 뿐만이 아닌 $CH_4$$C_2H_4$가 생성되었다. 이는 그래핀으로 인해 이산화탄소 흡착 시간이 길어짐으로써 반응 중 생성된 중간체들이 전극 표면에 머무르는 시간이 길어졌으며, 결과적으로 C2 화합물 생성 반응까지 연속적으로 진행될 수 있었다고 판단된다.

Keywords

MOKRBW_2018_v25n4_105_f0001.png 이미지

Fig. 2. 실온 조건에서 측정한 (a) PCu 샘플과 (b) PCuG 샘플의 Raman spectroscopy.

MOKRBW_2018_v25n4_105_f0002.png 이미지

Fig. 3. PCu 샘플과 PCuG 샘플의 Cyclic voltammetry(V vs. RHE).Scan rate 0.02 Vs−1.

MOKRBW_2018_v25n4_105_f0003.png 이미지

Fig. 1. (a) PCu과 (b) PCuG의 SEM morphology.

MOKRBW_2018_v25n4_105_f0004.png 이미지

Fig. 4. (a) PCu와 (b) PCuG의 -1.0 V ~ -1.4 V 전압에 따른 전기 화학적 이산화탄소 환원 기체 생성물 발생량(μmol/m3).

Table 1. PCu 샘플과 PCuG 샘플의 전기화학적 이산화탄소 환원 기체 생성물 발생량. (인가전압 −1.4 V vs. RHE).

MOKRBW_2018_v25n4_105_t0001.png 이미지

References

  1. P. H. Abelson, "Energy and Climate", Science, 197, 941 (1977). https://doi.org/10.1126/science.197.4307.941
  2. G. A. Olah, G. K. S. Prakash, and A. Goeppert, "Anthropogenic chemical carbon cycle for a sustainable future", J. Am. Chem. Soc., 133, 12881 (2011). https://doi.org/10.1021/ja202642y
  3. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, "Combining theory and experiment in electrocatalysis: Insights into materials design", Science, 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
  4. K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, and M. T. M. Koper, "A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrode", Chem. Lett. Sci., 2, 1902 (2011). https://doi.org/10.1039/c1sc00277e
  5. Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, "Production of Methane and Ethylene in Electrochemical Reduction of Carbon-Dioxide at Copper Electrode in Aqueous Hydrogencarbonate Solution", Chem. Lett., 15, 897 (1986). https://doi.org/10.1246/cl.1986.897
  6. Y. Hori, A. Murata, R. Takahashi, and S. Suzuki, "Electroreduction of CO to $CH_4$ and $C_2H_4$ at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure", J. Am. Chem. Soc., 109, 5022 (1987). https://doi.org/10.1021/ja00250a044
  7. Y. Hori, A. Murata, and R. Takahashi, "Formation of Hydrocarbons in the Electrochemical Reduction of Carbon-Dioxide at a Copper Electrode in Aqueous-Solution", J. Chem. Soc., Faraday Trans, 85, 2309 (1989). https://doi.org/10.1039/f19898502309
  8. Y. Hori, R. Takahashi, Y. Yoshinami, and A. Murata, "Electrochemical Reduction of CO at a Copper Electrode", J. Phys. Chem. B., 101, 7075 (1997). https://doi.org/10.1021/jp970284i
  9. J. J. Kim, D. P. Summers, and K. W. Frese Jr., "Reduction of $CO_2$ and CO to Methane on Cu Foil Electrodes", J. Electroanal. Chem., 245(1-2), 223 (1988). https://doi.org/10.1016/0022-0728(88)80071-8
  10. S. I. Cho, J. Yu, S. K. Kang, and D. Y. Shin, "The Oxidation study of Pure Tin via Electrochemical Reduction Analysis", J. Microelectron. Packag. Soc., 11(3), 55 (2004).
  11. Q. Lu, J. Rosen, and F. Jiao, "Nanostructured metallic electrocatalysts for carbon dioxide reduction", ChemCatChem, 7(1), 38 (2015). https://doi.org/10.1002/cctc.201402669
  12. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, and Y. Xie, "Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel", Nature, 529, 68 (2016). https://doi.org/10.1038/nature16455
  13. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, and F. Jiao, "A selective and efficient electrocatalyst for carbon dioxide reduction", Nat. Commun., 5, 3242 (2014). https://doi.org/10.1038/ncomms4242
  14. Y. Hori, "A selective and efficient electrocatalyst for carbon dioxide reduction", Mod. Asp. Electrochem., 42, 89 (2008).
  15. Y. H. Chen, and M. W. Kanan, "Tin Oxide Dependence of the $CO_2$ Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts", J. Am. Chem. Soc., 134, 1986 (2012). https://doi.org/10.1021/ja2108799
  16. D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, and B. S. Yeo, "Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts", ACS Catal., 5, 2814 (2015). https://doi.org/10.1021/cs502128q
  17. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kral, J. Abiade, and A. Salehi-Khojin, "Robust carbon dioxide reduction on molybdenum disulphide edges", Nat. Commun., 5, 4470 (2014). https://doi.org/10.1038/ncomms5470
  18. J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B. I. Yakobson, J. Lou, and P. M. Ajayan, "Achieving Highly Efficient, Selective, and Stable $CO_2$ Reduction on Nitrogen-Doped Carbon Nanotubes", ACS Nano, 9, 5364 (2015). https://doi.org/10.1021/acsnano.5b01079
  19. B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B. A. Rosen, R. Haasch, J. Abiade, A. L. Yarin, and A. Salehi-Khojin, "Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction", Nat. Commun., 4, 2819 (2013). https://doi.org/10.1038/ncomms3819
  20. S. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass, and T. J. Meyer, "Polyethylenimine-Enhanced Electrocatalytic Reduction of $CO_2$ to Formate at Nitrogen-Doped Carbon Nanomaterials", J. Am. Chem. Soc., 136, 7845 (2014). https://doi.org/10.1021/ja5031529
  21. J. Qiao, Y. Liu, F. Hong, and J. Zhang, "A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels", Chem. Soc. Rev., 43(2), 631 (2014). https://doi.org/10.1039/C3CS60323G
  22. S. Deng, and V. Berry, "Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications", Materials Today, 19, 197 (2016). https://doi.org/10.1016/j.mattod.2015.10.002
  23. Y. Tang, X. Hu, and C. Liu, "Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on $TiO_2$ nanotube array for highly stable photocatalytic activity", Phys. Chem. Chem. Phys., 16, 25321 (2014). https://doi.org/10.1039/C4CP04057K
  24. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotech., 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  25. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy", Nano. Lett., 10(3), 751 (2010). https://doi.org/10.1021/nl904286r
  26. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett., 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

Cited by

  1. 유기금속화학기상증착법을 이용한 전이금속 칼코게나이드 단일층 및 이종구조 성장 vol.27, pp.4, 2018, https://doi.org/10.6117/kmeps.2020.27.4.119
  2. 주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.061
  3. 금속/그래핀 이중 구조 와이어의 합성 및 전기적 특성 연구 vol.28, pp.1, 2018, https://doi.org/10.6117/kmeps.2021.28.1.067