DOI QR코드

DOI QR Code

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels

아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향

  • Kim, Younghun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Taehee (Department of Materials Science and Engineering, Yonsei University) ;
  • Shim, Jong Gil (GLChem Co., ltd.) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2018.12.12
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

물유리 기반 실리카 에어로겔은 실리카 알콕사이드 기반 실리카 에어로겔에 비해 단가가 싸지만 기공률 및 비표면적과 같은 기공 특성이 상대적으로 열악하여 수요가 감소되고 있다. 이를 해결하기 위해 본 연구에서는 졸 상태에서 건조 제어 화학 첨가제(drying control chemical additive)인 아세토니트릴(acetonitrile)을 첨가하여 물성을 향상시키고자 하였다. 상압 건조 물유리 기반 실리카 에어로겔은 졸-겔 공정을 통해 제조되었으며, 졸 상태에서 물유리와 0, 0.05, 0.1, 0.15, 0.2의 몰 비율로 아세토니트릴을 첨가하여 실험을 수행하였다. 최종 생성물의 물성은 퓨리에 분광기(Fourier transform infrared), 접촉각측정기(contact angle measurement), Brunauer-Emmett-Teller 및 Barrett-Joyner-Halenda 분석기와 전계방사형 주사전자현미경(field emission scanning electron microscopy)를 이용하여 분석하였다. 졸 상태에서 물유리와의 몰 비율이 0.15인 아세토니트릴을 첨가한 샘플의 경우, 높은 비표면적 ($577m^2/g$), 높은 기공 부피 (3.29 cc/g), 높은 기공률 (93%)을 보유하여 실리카 알콕사이드 기반 실리카 에어로겔과 유사한 기공구조를 나타낼 수 있음을 확인하였다.

Keywords

MOKRBW_2018_v25n4_143_f0001.png 이미지

Fig. 1. FT-IR spectra of sodium silicate based silica aerogels: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 (acetonitrile/Na2SiO3 = 0.2).

MOKRBW_2018_v25n4_143_f0002.png 이미지

Fig. 2. Contact angle measurement of sodium silicate based silica aerogels: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/ Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 (acetonitrile/Na2SiO3 = 0.2).

MOKRBW_2018_v25n4_143_f0003.png 이미지

Fig. 3. Pore size distributions of samples prepared by adding a various quantity of acetonitrile: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 (acetonitrile/Na2SiO3 = 0.2).

MOKRBW_2018_v25n4_143_f0004.png 이미지

Fig. 4. N2 absorption-desorption isotherms of samples prepared by adding a various quantity of acetonitrile: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 acetonitrile/Na2SiO3 = 0.2).

MOKRBW_2018_v25n4_143_f0005.png 이미지

Fig. 5. SEM images of samples prepared by adding a various quantity of acetonitrile: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 (acetonitrile/Na2SiO3 = 0.2).

Table 1. Pore-structural properties of different silica aerogels: M0 (acetonitrile/Na2SiO3 = 0), M1 (acetonitrile/Na2SiO3 = 0.05), M2 (acetonitrile/Na2SiO3 = 0.1), M3 (acetonitrile/Na2SiO3 = 0.15), M4 (acetonitrile/Na2SiO3 = 0.2).

MOKRBW_2018_v25n4_143_t0001.png 이미지

References

  1. A. S. Dorcheh and M. H. Abbasi, "Silica aerogel; synthesis, properties and characterization", Journal of Materials Processing Technology, 199(1), 10 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060
  2. L. W. Hrubesh, "Aerogel applications", Journal of Non-Crys-talline Solids, 225, 335 (1998). https://doi.org/10.1016/S0022-3093(98)00135-5
  3. M. Schmidt and F. Schwertfeger, "Applications for silica aerogel products", Journal of Non-Crystalline Solids, 225, 364 (1998). https://doi.org/10.1016/S0022-3093(98)00054-4
  4. V. Parale, D. Mahadik, M. Kavale, A. Venkateswara Rao, P. Wagh, and S. Gupta, "Potential Application of Silica Aerogel Granules for Cleanup of Accidental Spillage of Various Organic Liquids", Soft Nanoscience Letters, 1 (2011).
  5. S.-W. Hwang, T.-Y. Kim, and S.-H. Hyun, "Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying", Microporous and Mesoporous Materials, 130(1), 295 (2010). https://doi.org/10.1016/j.micromeso.2009.11.024
  6. J. P. Nayak and J. Bera, "Preparation of Silica Aerogel by Ambient Pressure Drying Process using Rice Husk Ash as Raw Material", Transactions - Indian Ceramic Society, 68(2), 1 (2015).
  7. P. B. Sarawade, J.-K. Kim, A. Hilonga, and H. T. Kim, "Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process", Solid State Sciences, 12(5), 911 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.01.032
  8. C. J. Lee, G. S. Kim, and S. H. Hyun, "Synthesis of silica aerogels from waterglass via new modified ambient drying", Journal of Materials Science, 37(11), 2237 (2002). https://doi.org/10.1023/A:1015309014546
  9. S. He, Y. Huang, G. Chen, M. Feng, H. Dai, B. Yuan, and X. Chen, "Effect of heat treatment on hydrophobic silica aerogel", Journal of Hazardous Materials, 362, 294 (2019). https://doi.org/10.1016/j.jhazmat.2018.08.087
  10. H.-Y. Nah, H.-N.-R. Jung, and H. H. Park, "Effect of Acid Catalyst Kinds on the Pore Structural Characteristics of Water Glass based Silica Aerogel (in Kor.)", J. Microelectron. Packag. Soc., 24(3), 13 (2017). https://doi.org/10.6117/KMEPS.2017.24.3.013
  11. E. Degn Egeberg and J. Engell, "Freeze drying of silica gels prepared from siliciumethoxid", Journal de physique colloques, 50, 23 (1989).
  12. T. B. Roth, A. Anderson, and M. K. Carroll, "Analysis of a rapid supercritical extraction aerogel fabrication process: Prediction of thermodynamic conditions during processing", Journal of Non-Crystalline Solids, 354, (2008).
  13. J. L. Gurav, A. V. Rao, A. P. Rao, D. Y. Nadargi, and S. D. Bhagat, "Physical properties of sodium silicate based aerogels prepared by single step sol-gel process dried at ambient pressure", Journal of Alloys and Compounds, 476(1-2), 397 (2009). https://doi.org/10.1016/j.jallcom.2008.09.029
  14. L. Zhu, Y. Wang, S. Cui, F. Yang, Z. Nie, Q. Li, and Q. Wei, "Preparation of Silica Aerogels by Ambient Pressure Drying without Causing Equipment Corrosion", Molecules, 23(8), 1935 (2018). https://doi.org/10.3390/molecules23081935
  15. F. Schwertfeger, D. Frank, and M. Schmidt, "Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying", Journal of Non-Crystalline Solids, 225, 24 (1998). https://doi.org/10.1016/S0022-3093(98)00102-1
  16. M. -A. Eiarsrud, E. Nilsen, A. Rigacci, G. M. Pajonk, S. Buathier, D. Valette, M. Durant, B. Chevalier, P. Nitz, and F. Ehrburger-Dolle, "Strengthening of silica gels and aerogels by washing and aging processes", Journal of Non-Crystalline Solids, 285(1-3), 1 (2001). https://doi.org/10.1016/S0022-3093(01)00423-9
  17. S. Iswar, W. J. Malfait, S. Balog, F. Winnefeld, M. Lattuada, and M. M. Koebel, "Effect of aging on silica aerogel properties", Microporous and Mesoporous Materials, 241, 293 (2017). https://doi.org/10.1016/j.micromeso.2016.11.037
  18. P. Terzioglu, S. Yucel, B. Karakuzu, T. Merve Temel, and Y. Elalmis, "Effect of Acid Type and Gelation pH on The Structural Properties of Silica Aerogels Prepared by Use of Rice Hull Biosilica", Sigma J Eng & Nat Sci., 34(2), 175 (2016).
  19. A. Venkateswara Rao, and G. M. Pajonk, "Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels", Journal of Non-Crystalline Solids, 285(1), 202 (2001). https://doi.org/10.1016/S0022-3093(01)00454-9
  20. S. He, X. Cheng, Z. Li, X. Shi, K. Li, and H. Zhang, "Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical property and excellent absorptivity", Materials Letters, 154, 107 (2015). https://doi.org/10.1016/j.matlet.2015.02.101
  21. K.-Y. Lee, H.-N.-R. Jung, D. B. Mahidik, and H. H. Park, "Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer", J. Microelectron. Packag Soc., 23(3), 1 (2016).
  22. D. Haranath, A. V. Rao, and P. B. Wagh, "Influence of DCCAs on Optical Transmittance and Porosity Properties of TMOS Silica Aerogels", Journal of Porous Materials, 6(1), 55 (1999). https://doi.org/10.1023/A:1009649403740
  23. A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, "Effect of glycerol on monolithicity, density, microhardness and sintering temperature of TMOS silica aerogels", Microporous Materials, 12(1), 63 (1997). https://doi.org/10.1016/S0927-6513(97)00066-7
  24. T. Adachi and S. Sakka, "The role of N,N-dimethylformamide, a DCCA, in the formation of silica gel monoliths by sol-gel method", Journal of Non-Crystalline Solids, 99(1), 118 (1988). https://doi.org/10.1016/0022-3093(88)90464-4
  25. R. F. S. Lenza, E. H. M. Nunes, D. C. L. Vasconcelos, and W. L. Vasconcelos, "Preparation of sol-gel silica samples modified with drying control chemical additives", Journal of Non-Crystalline Solids, 423-424, 35 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.010
  26. S. He, D. Huang, H. Bi, Z. Li, H. Yang, and X. Cheng, "Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass", Journal of Non-Crystalline Solids, 410, 58 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.12.011
  27. H.-Y. Nah, V. G. Parale, H.-N.-R. Jung, K.-Y. Lee, C.-H. Lim, Y. S. Ku, and H. H. Park, "Role of oxalic acid in structural formation of sodium silicate-based silica aerogel by ambient pressure drying", Journal of Sol-Gel Science and Technology, 85(2), 302 (2018). https://doi.org/10.1007/s10971-017-4553-2
  28. H. Omranpour and S. Motahari, "Effects of processing conditions on silica aerogel during aging: Role of solvent, time and temperature", Journal of Non-Crystalline Solids, 379, 7 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.07.025
  29. L. Cai and G. Shan, "Elastic silica aerogel using methyltrimethoxysilane precusor via ambient pressure drying", Journal of Porous Materials, 22(6), 1455 (2015). https://doi.org/10.1007/s10934-015-0026-6
  30. A. Venkateswara Rao, V. V. Ganbavle, U. K. H. Bangi, and S. L. Dhere, "Influence of preparation conditions on nanoporous structure and optical transmission of sodium silicate based ambient pressure dried aerogels employing shaking", Journal of Porous Materials, 18(6), 751 (2011). https://doi.org/10.1007/s10934-010-9444-7
  31. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution", Pure and Applied Chemistry, 87(9-10), 1051 (2015). https://doi.org/10.1515/pac-2014-1117
  32. A. Venkateswara Rao and S. D. Bhagat, "Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process", Solid State Sciences, 6(9), 945 (2004). https://doi.org/10.1016/j.solidstatesciences.2004.04.010