DOI QR코드

DOI QR Code

The Effects of ZnO Sub-layer Thickness on the Room Temperature Ferromagnetism of (ZnO/Co) Multilayer

(ZnO/Co) 다층 박막에서 ZnO층의 두께가 상온강자성 특성에 미치는 영향

  • 강성근 (앰코테크놀로지코리아(주)) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2018.12.11
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Room temperature ferromagnetism of Co doped ZnO was studied using (ZnO/Co) multilayer structure, and the effects of ZnO sub-layer thickness on the RT ferromagnetism was investigated. As for the as-deposited state, the diamagnetism was observed for ($ZnO\;20{\AA}/Co\;x{\AA}$) while the ferromagnetism was observed for ($ZnO\;40{\AA}/Co\;x{\AA}$). After vacuum-annealed, both showed the RT ferromagnetism and ($ZnO\;40{\AA}/Co\;x{\AA}$) structure interestingly showed negative remanence magnetization behavior. UV-Vis spectrometer revealed that Co atoms were substituted with Zn in ZnO and Co cluster was not found in XPS and HRTEM EDS analysis.

(ZnO/Co) 다층박막 구조를 이용하여 Co 도핑한 ZnO의 상온강자성 특성을 조사하였으며, 특히 ZnO 박막층의 두께가 (ZnO/Co) 다층박막의 상온강자성 특성에 미치는 영향을 조사하였다. ZnO 박막층의 두께가 $20{\AA}$, $40{\AA}$일 때 증착상태에서는 각각 반자성과 강자성 특성을 나타내었으며 진공열처리 후에는 모두 강자성 특성을 나타내었다. 특히 ($ZnO\;40{\AA}/Co\;x{\AA}$)는 열처리 후에 음의 잔류자화 거동을 나타내었다. UV-Vis 분석을 통해서 Co 일부가 Zn와 치환되어 위치하고 있음을 확인할 수 있었으며, 열처리 전후에 대한 XPS 및 HRTEM EDS 분석에서 Co 클러스터의 형성은 관찰되지 않았다.

Keywords

MOKRBW_2018_v25n4_137_f0001.png 이미지

Fig. 1. Schematic diagram for origins of room temperature ferromagnetism in dilute magnetic semiconductor.

MOKRBW_2018_v25n4_137_f0002.png 이미지

Fig. 2. Room temperature magnetization curves for (ZnO 20Å/Co xÅ) multilayer (a) as-deposited (b) vacuum-annealed at 400℃ for 1 hour, and for (ZnO 40Å/Co xÅ) multilayer (c) as-deposited (d) vacuum-annealed at 400℃ for 1 hour.

MOKRBW_2018_v25n4_137_f0003.png 이미지

Fig. 3. UV-Vis transmission of (ZnO 20Å/Co xÅ) multilayer (a) as-deposited (b) vacuum-annealed at 400℃

MOKRBW_2018_v25n4_137_f0004.png 이미지

Fig. 4. XPS depth profiles of (ZnO 20Å/Co 3Å) multilayer (a) as-deposited (b) vacuum-annealed at 400℃

MOKRBW_2018_v25n4_137_f0005.png 이미지

Fig. 5. HRTEM EDS analysis of (ZnO 20Å/Co 3Å) multilayer (a) as-deposited (b) vacuum-annealed at 400℃for 1 hour, and (ZnO 40Å/ Co 3Å) multilayer (c) as-deposited (d) vacuum-annealed at 400℃for 1 hour.

Table 1. (ZnO/Co)/ZnO multilayer specification.

MOKRBW_2018_v25n4_137_t0001.png 이미지

References

  1. D. H. Mun, and J. S. Ha, "The effect of precursor concentration on ZnO nanorod grown by low-temperature aqueous solution method", J. Microelectron. Packag. Soc. 20(1), 33 (2013). https://doi.org/10.6117/kmeps.2013.20.1.033
  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors", Science 287, 1019 (2000). https://doi.org/10.1126/science.287.5455.1019
  3. S. Ning, P. Zhan, W. Wang, Z. Li, and Z. Zhang, "Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field", Chin. Phys. B., 23(12), 127503 (2014). https://doi.org/10.1088/1674-1056/23/12/127503
  4. P. Thamaraiselvan, M. Venkatachalam, M. Saroja, P. Gowthaman, S. Ravikumar, and S. Shankar, "Structural, Optical and Magnetic Properties of Co Doped ZnO Thin Films", International Journal of TechnoChem Research, 3(1), 183 (2017).
  5. R. Baghdad, N. Leme, G. Lamura, A. Zeinert, N. Hadj-Zoubir, M. Bousmaha, M. A. Bezzerrouk, H. Bouyanfif, B. Allouche, and K. Zellama, "Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method", Superlattices and Microstructures, 104, 553 (2017). https://doi.org/10.1016/j.spmi.2016.11.069
  6. J. Y. Kim, B. G. Kim, Y. K. Lee, J. H. Kim, D. H. Woo, S. Y. Kweon, and J. H. Park, "Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering", J. Microelectron. Packag. Soc., 17(1), 19 (2010).
  7. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, "Donor impurity band exchange in dilute ferromagnetic oxides", Nature Mater., 4, 173 (2005). https://doi.org/10.1038/nmat1310
  8. S. Kang, Y. Kim, S. E. Kim, and S. Kim, "The Effects of Heat Treatment on Room Temperature Ferromagnetism in a Digitally Co Doped ZnO Thin Film", Electron. Mater. Lett., 9(1), 7 (2013).
  9. M. Kapilashrami, J. Xu, V. Strom, K. V. Rao, and L. Belova, "Transition from ferromagnetism to diamagnetism in undoped ZnO thin films", Appl. Phys. Lett., 95, 033104 (2009). https://doi.org/10.1063/1.3180708
  10. S. Gu, W. He, M. Zhang, T. Zhuang, Y. Jin, H. ElBidweihy, Y. Mao, J. H. Dickerson, M. J. Wagner, E. D. Torre, and L. H. Bennett, "Physical Justification for Negative Remanent Magnetization in Homogeneous Nanoparticles", SCIENTIFIC REPORTS, 4, 6267 (2014).
  11. E. D. Torre, and H. B. Lawrence, "Negative remanent magnetization", Journal of Applied Physics, 115(17), 17A720 (2014). https://doi.org/10.1063/1.4863490
  12. J. Yang, J. Kim, J. Lee, S. Woo, J. Kwak, J. Hong, and M. Jung, "Inverted hysteresis loops observed in a randomly distributed cobalt nanoparticle system", Physical Review B, 78(9), 094415 (2008). https://doi.org/10.1103/PhysRevB.78.094415
  13. M. Tay, Y. Wu, G. C. Han, T. C. Chong, Y. K. Zheng, S. J. Wang, Y. Chen, and X. Pan, "Ferromagnetism in inhomogeneous Zn1-xCoxO thin films", J. Appl. Phys., 100, 063910 (2006). https://doi.org/10.1063/1.2348632