DOI QR코드

DOI QR Code

Study on noise prediction by classification of noise sources of a tip-jet driven rotor

팁젯 로터의 소음원 구분을 통한 소음 예측 기법 연구

  • 고정우 (서울대학교 기계항공공학부) ;
  • 김종희 (서울대학교 기계항공공학부) ;
  • 이수갑 (서울대학교 공학연구원)
  • Received : 2018.01.08
  • Accepted : 2018.03.29
  • Published : 2018.03.31

Abstract

The noise sources of a tip-jet driven rotor can be separated by rotor blade noise and jet noise. The rotor blade noise consists of thickness noise, loading noise, nonlinear quadrupole noise, and jet noise is divided into nozzle momentum noise and jet radiation noise. The flow analysis for the prediction of rotor blade noise is performed by CFD (Computational Fluid Dynamics) analysis, and the noise source of the rotor blade noise is identified by simultaneously applying the permeable and impermeable surface based FW-H (Ffowcs Williams-Hawkings) acoustic analogy. The nozzle momentum noise is obtained by permeable surface FW-H, and jet radiation noise is predicted by using empirical method for the fixed-wing jet. Both of jet noises use nozzle exit condition for noise analysis. The accuracy of the technique is verified based on the noise measurements of the tip-jet driven rotor, and the unique noise characteristics of the tip-jet driven rotor is confirmed by spectrum analysis.

팁젯 로터의 소음원은 로터 블레이드 소음과 제트 소음으로 분리할 수 있다. 로터 블레이드 소음은 두께 소음, 하중 소음, 비선형 사중극 소음으로 구성되고 제트 소음은 노즐 모멘텀 소음과 제트 방사 소음으로 나뉜다. 로터 블레이드 소음을 해석하기 위해 유동 해석 정보를 전산유체역학(Computational Fluid Dynamics, CFD) 해석으로 얻은 뒤 투과면, 비투과면 FW-H(Ffowcs Williams-Hawkings) 음향 상사법을 동시에 적용하여 각 소음원을 구분하였다. 그리고 제트 소음은 노즐 출구 조건을 활용하여 투과면 FW-H 음향 상사법으로 노즐 모멘텀 소음을 구하고 기존 고정익 제트에 대한 경험식을 활용하여 제트 방사 소음을 얻었다. 검증 기체의 소음 측정값을 기준으로 해석 기법의 신뢰성을 검증하였고 스펙트럼 분석을 통해 팁젯 로터의 독특한 소음 특성을 확인하였다.

Keywords

References

  1. J. Gordon Leishman, Principles of Helicopter aerodynamics Second Edition (Cambridge university press, New York, 2006), pp. 692-722.
  2. G. D. Walsh, A preliminary acoustic investigation of a coaxial helicopter in high-speed flight, (Master Thesis, The Pennsylvania State University, 2016).
  3. M. J. Park, J. S. Jang, and D. J. Lee, "Noise prediction of ducted fan unmanned aerial vehicles considering strut effect in hover," IJASS 18, 144-153 (2017). https://doi.org/10.5139/IJASS.2017.18.1.144
  4. K. S. Brentner, J. P. Morris, and L. V. Lopes. "A method for predicting the noise of a tip-jet driven rotor," J. American Helicopter Society 59, 1-10 (2014).
  5. S. T. Kim, S. G. Lee, and K. H. Kim, "Wavenumber extended high order oscillation control finite volume schemes for multi-dimensional aeroacoustic computations," J. Computational Physics 227, 4089-4122 (2008). https://doi.org/10.1016/j.jcp.2007.12.013
  6. W. Y. Choi, S. H. Lee, J. Y. Jung, and S. G. Lee, "New far-field boundary and initial conditions for computation of rotors in vertical flight using vortex tube model," J. American Helicopter Society 53, 382-397 (2008). https://doi.org/10.4050/JAHS.53.382
  7. K. H. Kim and C. Kim, "Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process," J. Computational Physics 208, 570-615 (2005). https://doi.org/10.1016/j.jcp.2005.02.022
  8. G. R. Srinivasan, J. D. Baeder, S. Obayashi, and W. J. McCroskey, "Flowfield of a lifting rotor in hover-A Navier-Stokes simulation," AIAA Journal 30, 2371-2378 (1992). https://doi.org/10.2514/3.11236
  9. K. S. Brentner and F. Farassat, "Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces," AIAA Journal 36, 1379-1386 (1998). https://doi.org/10.2514/2.558
  10. SAE International, "ARP876F: Gas turbine jet exhaust prediction," SAE International, Tech. Rep., 2013.
  11. H. H. Hubbard, Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1. Noise Sources (NASA Langley Research Center, Hampton, Virginia, 1991), pp. 65-149.