DOI QR코드

DOI QR Code

Microbiological Quality of Agricultural Water in Jeollabuk-do and the Population Changes of Pathogenic Escherichia Coli O157:H7 in Agricultural Water Depending on Temperature and Water Quality

전라북도 지역 농업용수의 미생물학적 특성 및 온도와 수질에 따른 농업용수의 병원성대장균 O157:H7 밀도 변화

  • Hwang, Injun (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ham, Hyeonheui (Crop Protection Division, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Daesoo (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Chae, Hyobeen (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Se-Ri (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Hwang-Yong (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Hyun Ju (Crop Foundation Division, National Institute of Crop Sciences, Rural Development Administration) ;
  • Kim, Won-Il (Microbial Safety Team, Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration)
  • 황인준 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 함현희 (농촌진흥청 국립농업과학원 농산물안전성부 작물보호과) ;
  • 박대수 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 채효빈 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김세리 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김황용 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀) ;
  • 김현주 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김원일 (농촌진흥청 국립농업과학원 농산물안전성부 유해생물팀)
  • Received : 2019.10.18
  • Accepted : 2019.10.29
  • Published : 2019.12.31

Abstract

BACKGROUND: Agricultural water is known to be one of the major routes in bacterial contamination of fresh vegetable. However, there is a lack of fundamental data on the microbial safety of agricultural water in Korea. METHODS AND RESULTS: We investigated the density of indicator bacteria in the surface water samples from 31 sites collected in April, July, and October 2018, while the groundwater samples were collected from 20 sites within Jeollabuk-do in April and July 2018. In surface water, the mean density of coliform, fecal coliform, and Escherichia coli was 2.7±0.55, 1.9±0.71, and 1.4±0.58 log CFU/100 mL, respectively, showing the highest bacterial density in July. For groundwater, the mean density of coliform, fecal coliform, and E. coli was 1.9±0.58, 1.4±0.37, and 1.0±0.33 log CFU/ 100mL, respectively, showing no significant difference between sampling time. The survival of E. coli O157:H7 were prolonged in water with higher organic matter contents such as total nitrogen (TN), and nitrate-nitrogen (NO3-N). The reduction rates of E. coli O157:H7 in the water showed greater in order of 25, 35, 5, and 15℃. CONCLUSION: These results can be utilized as fundamental data for prediction the microbiological contamination of agricultural water and the development of microbial prevention technology.

농업용수는 채소류의 식중독세균 오염의 주요 경로 중 하나임에도 불구하고 우리나라에서는 농업용수의 미생물학적 안전성 대한 기초 자료가 부족한 실정이다. 본 연구에서는 전라북도에서 2018년 4월, 7월, 10월에 31지점에서 수집한 지표수 시료와 2018년 4월 7월에 20지점에서 수집한 지하수 시료의 위생지표세균 밀도를 조사하였다. 지표수에서는 평균적으로 대장균군이 2.7±0.55 log CFU/100 mL, 분원성대장균군 1.9±0.71 log CFU/100 mL, 대장균 1.4±0.58 log CFU/100 mL로 나타났고, 7월에 가장 높은 밀도를 보였다. 지하수의 경우 평균적으로 대장균군이 1.9±0.58 log CFU/100 mL, 분원성대장균군 1.4±0.37 log CFU/100 mL, 대장균 1.0±0.33 log CFU/100 mL로 나타났고 조사시기 간의 유의한 차이가 나타나지 않았다. 총질소량(T-N), 질산성질소(NO3-N) 등 유기물 함량이 높은 용수에서 E. coli O157:H7의 생존이 연장되는 것으로 나타났다. 물에서의 E. coli O157:H7 감소율은 25℃>35℃>5℃>15℃ 순으로 높게 나타났다. 이러한 결과는 전북 지역 농업용수의 미생물학적 오염도와 수질과 온도가 E. coli O157:H7의 생존에 미치는 영향을 보여준다. 이러한 결과는 농업용수의 미생물학적 오염도를 예측하고 미생물 제어 기술 개발의 기초자료로서 활용될 수 있다.

Keywords

References

  1. Allende, A., & Monaghan, J. (2015). Irrigation water quality for leafy crops: a perspective of risks and potential solutions. International Journal of Environmental Research and Public Health, 12(7), 7457-7477. https://doi.org/10.3390/ijerph120707457
  2. Auld, H., MacIver, D., & Klaassen, J. (2004). Heavy rainfall and waterborne disease outbreaks: the Walkerton example. Journal of Toxicology and Environmental Health, Part A, 67(20-22), 1879-1887. https://doi.org/10.1080/15287390490493475
  3. Clavero, M., & Beuchat, L. R. (1996). Survival of Escherichia coli O157: H7 in broth and processed salami as influenced by pH, water activity, and temperature and suitability of media for its recovery. Applied and Environmental Microbiology, 62(8), 2735-2740. https://doi.org/10.1128/AEM.62.8.2735-2740.1996
  4. Czajkowska, D., Witkowska-Gwiazdowska, A., Sikorska, I., Boszczyk-Maleszak, H., & Horoch, M. (2005). Survival of Escherichia coli serotype O157: H7 in water and in bottom-shore sediments. Polish Journal of Environmental Studies, 14(4), 423-430.
  5. Divya, A., & Solomon, P. (2016). Effects of some water quality parameters especially total coliform and fecal coliform in surface water of Chalakudy river. Procedia Technology, 24, 631-638. https://doi.org/10.1016/j.protcy.2016.05.151
  6. Henis, Y., Gurijala, K. R., & Alexander, M. (1989). Factors involved in multiplication and survival of Escherichia coli in lake water. Microbial ecology, 17(2), 171-180. https://doi.org/10.1007/BF02011851
  7. Kleinheinz, G. T., McDermott, C. M., Hughes, S., & Brown, A. (2010). Effects of rainfall on E. coli concentrations at Door County, Wisconsin beaches. International Journal of Microbiology, 2009, 1-9, https://doi:10.1155/2009/876050.
  8. Korhonen, L. K., & Martikalnon, P. (1991). Survival of Escherichia coli and Campylobacter jejuni in untreated and filtered lake water. Journal of Applied Bacteriology, 71(4), 379-382. https://doi.org/10.1111/j.1365-2672.1991.tb03804.x
  9. LeChevallier, M. W., Welch, N. J., & Smith, D. B. (1996). Full-scale studies of factors related to coliform regrowth in drinking water. Applied and Environmental Microbiology, 62(7), 2201-2211. https://doi.org/10.1128/AEM.62.7.2201-2211.1996
  10. Mikhail, A. F. W., Jenkins, C., Dallman, T. J., Inns, T., Douglas, A., Martin, A. I. C., Fox, A., Cleary, P., Elson, R., & Hawker, J. (2018). An outbreak of Shiga toxinproducing Escherichia coli O157: H7 associated with contaminated salad leaves: epidemiological, genomic and food trace back investigations. Epidemiology & Infection, 146(2), 187-196. https://doi.org/10.1017/S0950268817002874
  11. Oh, S. Y., Nam, K. W., & Yoon, D. H. (2018). Analysis of Pathogenic Microorganism's Contamination on Organic Leafy Vegetables at Greenhouse in Korea. Journal of Food Hygiene and Safety, 33(1), 31-37. https://doi.org/10.13103/JFHS.2018.33.1.31
  12. Pachepsky, Y., Shelton, D., Dorner, S., & Whelan, G. (2016). Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Critical Reviews in Microbiology, 42(3), 384-393.
  13. Pagadala, S., Marine, S. C., Micallef, S. A., Wang, F., Pahl, D. M., Melendez, M. V., Kline, W. L., Oni, R. A., Walsh, C. S., Everts, K. L., & Buchanan, R. L. (2015). Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes. International Journal of Food Microbiology, 196, 98-108. https://doi.org/10.1016/j.ijfoodmicro.2014.12.005
  14. Steele, M., & Odumeru, J. (2004). Irrigation water as source of foodborne pathogens on fruit and vegetables. Journal of food protection, 67(12), 2839-2849. https://doi.org/10.4315/0362-028X-67.12.2839
  15. Tran, N. H., Gin, K. Y.-H., & Ngo, H. H. (2015). Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater. Science of the Total Environment, 538, 38-57. https://doi.org/10.1016/j.scitotenv.2015.07.155
  16. Uyttendaele, M., Jaykus, L. A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., Holvoet, K., Korsten, L., Lau, M., McClure, P., Medema, G., Sampers, I., & Jasti, P. R. (2015). Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Comprehensive Reviews in Food Science and Food Safety, 14(4), 336-356. https://doi.org/10.1111/1541-4337.12133
  17. Van Der Linden, I., Cottyn, B., Uyttendaele, M., Berkvens, N., Vlaemynck, G., Heyndrickx, M., & Maes, M. (2014). Enteric pathogen survival varies substantially in irrigation water from belgian lettuce producers. International Journal of Environmental Research and Public Health, 11(10), 10105-10124. https://doi.org/10.3390/ijerph111010105
  18. Wang, G., & Doyle, M. P. (1998). Survival of enterohemorrhagic Escherichia coli O157: H7 in water. Journal of food protection, 61(6), 662-667. https://doi.org/10.4315/0362-028X-61.6.662
  19. Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., & Huang, H. (2011). Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 102(3), 2950-2956. https://doi.org/10.1016/j.biortech.2010.11.089