DOI QR코드

DOI QR Code

Porous Sn-incorporated Ga2O3 nanowires synthesized by a combined process of powder sputtering and post thermal annealing

분말 스퍼터링과 후열처리 복합 공정으로 제조한 주석 함유 갈륨 산화물 다공성 나노와이어

  • Lee, Haram (Department of Materials Science and Engineering, Chosun University) ;
  • Kang, Hyon Chol (Department of Materials Science and Engineering, Chosun University)
  • Received : 2019.10.26
  • Accepted : 2019.11.18
  • Published : 2019.12.31

Abstract

We investigated the post-annealing effect of Sn-incorporated β-Ga2O3 (β-Ga2O3 : Sn) nanowires (NWs) grown on sapphire (0001) substrates using radio-frequency powder sputtering. The β-Ga2O3 : Sn NWs were converted to a porous structure during the vacuum annealing process at 800℃. Host non-stoichiometric Ga2O3-x, is transformed into stoichiometric Ga2O3, where Sn atoms separate and form Sn nano-clusters that gradually evaporate in a vacuum atmosphere. As a result, the amount of Sn atoms was reduced from 1.31 to 0.27 at%. Pores formed on the sides of β-Ga2O3 : Sn NWs were observed. This increases the ratio of the surface to the volume of β-Ga2O3 : Sn NWs.

라디오주파수 분말 스퍼터링 방법으로 sapphire (0001) 기판 위에 Sn을 함유한 β-Ga2O3(β-Ga2O3 : Sn) 나노와이어를 증착하였다. 후열처리 공정의 가스 분위기가 나노와이어 형상의 변화에 미치는 영향을 연구하였다. 800℃에서 진공 중 열처리 과정에서, as-grown 나노와이어는 다공성 구조로 전이하였다. 비화학양론 Ga2O3-x는 화학양론 Ga2O3로 바뀌고, Sn원자는 응집하여 나노클러스터를 형성한다. Sn 나노클러스터는 증발하여 Sn 원자의 함량은 1.31에서 0.27 at%로 감소하였다. Sn원자의 증발로 인하여 나노와이어 표면에 다수의 기공이 형성되고, 이는 β-Ga2O3 : Sn 나노와이어의 체적대비 표면적 비율을 증가시킨다.

Keywords

References

  1. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer and M.A. Mastro, "A review of $Ga_2O_3$ materials, processing, and devices", Appl. Phys. Rev. 5 (2018) 011301. https://doi.org/10.1063/1.5006941
  2. L. Nagarajan, R.A. de Souza, D. Samuelis, I. Valov, A. Borger, J. Janek, K.-D. Becker, P.C. Schmidt and M. Martin, "A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide", Nature Mater. 7 (2008) 391. https://doi.org/10.1038/nmat2164
  3. M. Higashiwaki, K. Sasaki, T. Kamimura, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui and S. Yamakoshi, "Depletion-mode $Ga_2O_3$ metal-oxide-semiconductor field-effect transistors on ${\beta}-Ga_2O_3$ (010) substrates and temperature dependence of their device characteristics", Appl. Phys. Lett. 103 (2013) 123511. https://doi.org/10.1063/1.4821858
  4. A. Petitmangin, C. Hebert, J. Perriere, B. Gallas, L. Binet, P. Barboux and P. Vermaut, "Metallic clusters in nonstoichiometric gallium oxide films", J. Appl. Phys. 109 (2011) 013711. https://doi.org/10.1063/1.3531536
  5. Y. Aoki, C. Wiemann, V. Feyer, H.-S. Kim, C.M. Schneider, H.I. Yoo and M. Martin, "Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour", Nature Commun. 5 (2014) 3473. https://doi.org/10.1038/ncomms4473
  6. K.D. Chabak, N. Moser, A.J. Green, D.E. Walker Jr., S.E. Tetlak, E. Heller, A. Crespo, R. Fitch, J.P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li and G. Jessen, "Enhancement-mode $Ga_2O_3$ wrap-gate fin field-effect transistors on native (100) ${\beta}-Ga_2O_3$ substrate with high breakdown voltage", Appl. Phys. Lett. 109 (2016) 213501. https://doi.org/10.1063/1.4967931
  7. W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg and Y. Bando, "In-doped $Ga_2O_3$ nanobelt based photodetector with high sensitivity and wide-range photoresponse", J. Mater. Chem. 22 (2012) 17984. https://doi.org/10.1039/c2jm33189f
  8. L. Mazeina, Y.N. Picard, S.I. Maximenko, F.K. Perkins, E.R. Glaser, M.E. Twigg, J.A. Freitas Jr. and S.M. Prokes, "Growth of Sn-doped ${\beta}-Ga_2O_3$ nanowires and $Ga_2O_3-SnO_2$ heterostructures for gas sensing applications", Cryst. Growth Des. 9 (2009) 4471. https://doi.org/10.1021/cg900499c
  9. G. Cabello, L. Lillo, C. Caro, M.A. Soto-Arriaza, B. Chornik and G.E. Buono-Core, "Evaluation on the optical properties of $Ga_2O_{3-x}$ thin films co-doped with $Tb^{3+}$ and transition metals ($Mn^{2+}$, $Cr^{3+}$) prepared by a photochemical route", Ceram. Int. 39 (2013) 2443. https://doi.org/10.1016/j.ceramint.2012.08.096
  10. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui and S. Yamakoshi, "Si-ion implantation doping in ${\beta}-Ga_2O_3$ and its application to fabrication of low-resistance Ohmic contacts", Appl. Phys. Exp. 6 (2013) 086502. https://doi.org/10.7567/APEX.6.086502
  11. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui and S. Yamakoshi, "Recent progress in $Ga_2O_3$ power devices", Semicond. Sci. Technol. 31 (2016) 034001. https://doi.org/10.1088/0268-1242/31/3/034001
  12. A.T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J.S. Speck, K.T. Stevens, J.D. Blevins, D.B. Thomson, N. Moser, K.D. Chabak and G.H. Jessen, "Donors and deep acceptors in ${\beta}-Ga_2O_3$", Appl. Phys. Lett. 113 (2018) 062101. https://doi.org/10.1063/1.5034474
  13. K. Akaiwa, K. Kaneko, K. Ichino and S. Fujita, "Conductivity control of Sn-doped ${\alpha}-Ga_2O_3$ thin films grown on sapphire substrates", Jap. J. Appl. Phys. 55 (2016) 1202BA. https://doi.org/10.7567/JJAP.55.1202BA
  14. I. Lopez, A.D. Utrilla, E. Nogales, B. Mendez and J. Piqueras, "In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties", J. Phys. Chem. B 116 (2012) 3935.
  15. S.I. Maximenko, L. Mazeina, Y.N. Picard, J.A. Freitas, Jr., V.M. Bermudez and S.M. Prokes, "Cathodoluminescence studies of the inhomogeneities in Sn-doped $Ga_2O_3$ nanowires", Nano. Lett. 9 (2009) 3245. https://doi.org/10.1021/nl901514k
  16. S.Y. Park, S.Y. Lee, S.H. Seo, D.Y. Noh and H.C. Kang, "Self-catalytic growth of ${\beta}-Ga_2O_3$ nanowires deposited by radio-frequency magnetron sputtering", Appl. Phys. Exp. 6 (2013) 105001. https://doi.org/10.7567/APEX.6.105001
  17. S.Y. Lee, K.H. Choi and H.C. Kang, "Growth mechanism of In-doped ${\beta}-Ga_2O_3$ nanowires deposited by radio frequency powder sputtering", Mater. Lett. 176 (2016) 213. https://doi.org/10.1016/j.matlet.2016.04.116
  18. S.Y. Lee and H.C. Kang, "Synthesis and characterization of ${\beta}-Ga_2O_3$ nanowires on amorphous substrates using radio-frequency powder sputtering", J. Cryst. Growth 412 (2015) 25. https://doi.org/10.1016/j.jcrysgro.2014.11.030
  19. S.Y. Lee and H.C. Kang, "Sn-doped ${\beta}-Ga_2O_3$ nanowires deposited by radio frequency powder sputtering", Jpn. J. Appl. Phys. 57 (2018) 01AE02. https://doi.org/10.7567/JJAP.57.01AE02
  20. R. Roy, V.G. Hill and E.F. Osborn, "Polymorphism of $Ga_2O_3$ and the system $Ga_2O_3-H_2O$", J. Am. Chem. Soc. 74 (1952) 719. https://doi.org/10.1021/ja01123a039
  21. S. Zhang, P. Kang and T.J. Meyer, "Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to Formate", J. Am. Chem. Soc. 136 (2014) 1734. https://doi.org/10.1021/ja4113885
  22. N. Chiodini, F. Meinardi, F. Morazzoni, J. Padovani, A. Paleari, R. Scotti and G. Spinolo, "Thermally induced segregation of $SnO_2$ nanoclusters in Sn-doped silica glasses from oversaturated Sn-doped silica xerogels", J. Mater. Chem. 11 (2001) 926. https://doi.org/10.1039/b006999j
  23. H. Lee, B.E. Jeong, M.H. Yang, J.K. Lee, Y.B. Choi and H.C. Kang, "Annealing of Sn doped ZnO thin films grown by radio frequency powder sputtering", J. Korean Soc. Heat Treat. 31 (2018) 111. https://doi.org/10.12656/JKSHT.2018.31.3.111
  24. A. Battu, S. Manandhar and C. Ramana, "Nanomechanical characterization of titanium incorporated gallium oxide nanocrystalline thin films", Mater. Today Nano 2 (2018) 7. https://doi.org/10.1016/j.mtnano.2018.04.001
  25. E.J. Rubio, T.E. Mates, S. Manandhar, M. Nandasiri, V. Shutthanandan and C.V. Ramana, "Tungsten incorporation into gallium oxide: Crystal structure, surface and interface chemistry, thermal stability, and interdiffusion", J. Phys. Chem. C 120 (2016) 26720. https://doi.org/10.1021/acs.jpcc.6b05487