DOI QR코드

DOI QR Code

Mechanical Reinforcement of Electrospun Poly(L-lactic acid)(PLLA) Nanofibers with Chitin

키틴을 이용한 폴리(L-젖산)(Poly(L-lactic acid)(PLLA)) 전기방사 나노섬유의 기계적 보강

  • Moon, Hyunwoo (Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Choy, Seunghwan (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH)) ;
  • Hwang, Dong Soo (Division of Environmental Science and Engineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH))
  • 문현우 (포항공과대학교, 환경공학부) ;
  • 최승환 (포항공과대학교, 융합생명공학부) ;
  • 황동수 (포항공과대학교, 환경공학부, 융합생명공학부)
  • Received : 2019.06.21
  • Accepted : 2019.11.18
  • Published : 2019.12.31

Abstract

This study was conducted to analyze the difference in mechanically improved properties by distinguishing α-chitin and β-chitin for Poly(L-lactic acid)(PLLA). First, dissolution of chitins was established by mixing polar solvents hexafluoroisopropanol (HFIP) and trifluoroacetic acid (TFA) in appropriate proportions. Under these conditions, the dissolved chitin was used for electrospinning with other polymers. The electrospun nanofibers of the PLLA and chitins were successfully produced. Compared to the pristine state, when chitin was added to PLLA, the tensile strength increased 1.41 times (α-chitin), by 1.61 times (β- chitin), respectively. Based on this, it was confirmed that α- and β- chitin could be strategically used for different polymers. The results also suggest that chitin can be applied to various fields as good reinforcing material as well as electrospinning.

Keywords

References

  1. Abbott, A. P., Ballantyne, A. D., Conde, J. P., Ryder, K. S. and Wise, W. R. 2012. Salt modified starch: sustainable, recyclable plastics. Green Chem. 5, 1302-1307.
  2. Shamchina, J. L., Berton, P. and Rogers, R.D. 2019. Advances in functional chitin materials: a review. ACS Sustain. Chem. Eng. 7, 6444-6457. https://doi.org/10.1021/acssuschemeng.8b06372
  3. Zierdt, P., Theumer, T., Kulkarni, G., Daumlich, V., Klehm, J., Hirsch, U., Weber, A. 2015. Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. SM&T. 6, 6-14.
  4. Rudall, K. M. and Kenchington, W. The chitin system. 1973. BIOL. REV. 40, 597-636. https://doi.org/10.1111/j.1469-185X.1973.tb01570.x
  5. Blackwell, J., 1973. Chitin. In: Walton A.G and Blackwell J. (eds), Biopolymers, New York Academic Press, pp 474-489.
  6. Rinaudo, M. 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  7. Blackwell, J., Parker, K. D. and Rudall, K. M. 1965. Chitin in pogonophore tubes. J. Mar. Biol. Assoc. UK 45, 659-661. https://doi.org/10.1017/S0025315400016489
  8. Gaill, F., Persson, J., Sugiyama, P., Vuong, R. and Chanzy, H. 1992. The chitin system in the tubes of deep sea hydrothermal vent worms. J. Struct. Biol. 109, 116-128. https://doi.org/10.1016/1047-8477(92)90043-A
  9. Pillai, C. K. S., Paul, W. and Sharma Chandra, P. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34, 641-678. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  10. Pulapura, S. and Kohn, J. 1992. Trends in the development of bioresorbable polymers for medical applications. J. Biomater. Appl. 6, 216-250. https://doi.org/10.1177/088532829200600303
  11. Onishi, H. and Machida, Y. 1999. Biodegradation and distribution of water soluble chitosan in mice. Biomaterials 20, 175-182. https://doi.org/10.1016/S0142-9612(98)00159-8
  12. Khor, E. and Lim, L. 2003. Implantable applications of chitin and chitosan. Biomaterials 24, 2339-2340. https://doi.org/10.1016/S0142-9612(03)00026-7
  13. Jayakumar, R., Prabaharan, M., Nair, S. V. and Tamura, H. 2010. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28, 142-150. https://doi.org/10.1016/j.biotechadv.2009.11.001
  14. Zhang, C., Yuan, X., Wu, L., Han, Y. and Sheng, J. 2005. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41, 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027
  15. Fang, J., Niu, H., Lin, T. and Wang, X. 2008, Applications of electrospun nanofibers. Sci. Bull. 53, 2265-2286. https://doi.org/10.1007/s11434-008-0319-0
  16. Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., Kim, H. Y. and Lyoo, W. S. 2004. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J. Appl. Polym. Sci. 93, 1638-1646. https://doi.org/10.1002/app.20602
  17. Chen, Z., Mo, X., He, C. and Wang, H. 2008. Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr. Polym. 72, 140-148.
  18. Matthews, J. A., Wnek, G. E., Simpson, D. G. and Bowlin, G. L. 2002. Electrospinning of collagen nanofibers. Biomacromolecules 3, 232-238. https://doi.org/10.1021/bm015533u
  19. Li, D. and Xia, Y. 2004. Electrospinning of Nanofibers: reinventing the wheel? Adv. Mater. 16, 14.
  20. Gupta, P., Elkins, C., Long, T. E., Wilkes, G. L. 2005. Electrospinning of linear homopolymers of poly(methylmethacrylate): exploring relationships between fiber formation. viscosity, molecular weight and concentration in a good solvent. Polymer 46, 4799-4810. https://doi.org/10.1016/j.polymer.2005.04.021