DOI QR코드

DOI QR Code

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases

  • Muniyappan, Srinivasan (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2019.03.18
  • Accepted : 2019.03.20
  • Published : 2019.03.20

Abstract

${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.

Keywords

JGGMB2_2019_v23n1_26_f0001.png 이미지

Figure 1. Conformational model of αBC dimer in its 24-mer state (PDB 3J07).40 Each monomer is coloured blue or red, and the N- and C-terminal regions are removed for clear view (the residues 57-157 are only shown here). Note that two monomers adopt different conformations due to quaternary heterogeneity of αBC.

JGGMB2_2019_v23n1_26_f0002.png 이미지

Figure 2. Schematic representation of subunit exchange and quaternary dynamics of full-length human αBC (PDB 3J07), which is based on DA-SANS and ESI-nMS studies.37 The 24-mer complexes of αBC are shown in red and blue (left; before subunit exchange), while subunit exchange facilitates subunits to be mixed as shown with both colors present for each complex (right).

JGGMB2_2019_v23n1_26_f0003.png 이미지

Figure 3. Model for capturing amorphous and amyloid clients by full-length human αBC. For interaction with amorphous aggregates, the N-terminal domain (NTD) of αBC plays an essential role, while the β4-β8 binding groove of αBC constitutes the major interface to interact with amyloid aggregates. Reprinted by permission from Nature.30

References

  1. E. M. Crimmins, Gerontologist 55, 901 (2015) https://doi.org/10.1093/geront/gnv130
  2. A. V. Belikov, Ageing Res. Rev. 49, 11 (2019) https://doi.org/10.1016/j.arr.2018.11.002
  3. T. S. Dharmarajan and S. G. Gunturu, Am. Health Drug Benefits 2, 39 (2009)
  4. Alzheimer's Association, Alzheimers Dement. 12, 459 (2016) https://doi.org/10.1016/j.jalz.2016.03.001
  5. J. Hardy and D. J. Selkoe, Science 297, 353 (2002) https://doi.org/10.1126/science.1072994
  6. Y. Huang and L. Mucke, Cell 148, 1204 (2012) https://doi.org/10.1016/j.cell.2012.02.040
  7. S. M. Ward, D. S. Himmelstein, J. K. Lancia, and L. I. Binder, Biochem. Soc. Trans. 40, 667 (2012) https://doi.org/10.1042/BST20120134
  8. R. J. Baranello, K. L. Bharani, V. Padmaraju, N. Chopra, D. K. Lahiri, N. H. Greig, M. A. Pappolla, and K. Sambamurti, Curr. Alzheimer Res. 12, 32 (2015) https://doi.org/10.2174/1567205012666141218140953
  9. M. M. Wilhelmus, R. M. de Waal, and M. M. Verbeek, Mol. Neurobiol. 35, 203 (2007) https://doi.org/10.1007/s12035-007-0029-7
  10. P. Yan, X. Hu, H. Song, K. Yin, R. J. Bateman, J. R. Cirrito, Q. Xiao, F. F. Hsu, J. W. Turk, J. Xu, C. Y. Hsu, D. M. Holtzman, and J. M. Lee, J. Biol. Chem. 281, 24566 (2006) https://doi.org/10.1074/jbc.M602440200
  11. A. Ciechanover and Y. T. Kwon, Front. Neurosci. 11, 185 (2017)
  12. F. U. Hartl, A. Bracher, and M. Hayer-Hartl, Nature 475, 324 (2011) https://doi.org/10.1038/nature10317
  13. Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, and F. U. Hartl, Annu. Rev. Biochem. 82, 323 (2013) https://doi.org/10.1146/annurev-biochem-060208-092442
  14. E. Basha, H. O'Neill, and E. Vierling, Trends Biochem. Sci. 37, 106 (2012) https://doi.org/10.1016/j.tibs.2011.11.005
  15. M. Haslbeck, T. Franzmann, D. Weinfurtner, and J. Buchner, Nat. Struct. Mol. Biol. 12, 842 (2005) https://doi.org/10.1038/nsmb993
  16. H. S. McHaourab, J. A. Godar, and P. L. Stewart, Biochemistry 48, 3828 (2009) https://doi.org/10.1021/bi900212j
  17. E. V. Mymrikov, A. S. Seit-Nebi, and N. B. Gusev, Physiol. Rev. 91, 1123 (2011) https://doi.org/10.1152/physrev.00023.2010
  18. R. Van Montfort, C. Slingsby, and E. Vierling, Adv. Protein Chem. 59, 105 (2001) https://doi.org/10.1016/S0065-3233(01)59004-X
  19. P. P. Fagerholm, B. T. Philipson, and B. Lindstrom, Exp. Eye Res. 33, 615 (1981) https://doi.org/10.1016/S0014-4835(81)80101-7
  20. U. P. Andley, Prog. Retin. Eye Res. 26, 78 (2007) https://doi.org/10.1016/j.preteyeres.2006.10.003
  21. A. Tardieu, Annu. Rev. Biophys. Biophys. Chem. 17, 47 (1988) https://doi.org/10.1146/annurev.bb.17.060188.000403
  22. A. Tardieu, Int. J. Biol. Macromol. 22, 211 (1998) https://doi.org/10.1016/S0141-8130(98)00018-X
  23. M. Delaye and A. Tardieu, Nature 302, 415 (1983) https://doi.org/10.1038/302415a0
  24. T. Iwaki, A. Kume-Iwaki, and J. E. Goldman, J. Histochem. Cytochem. 38, 31 (1990) https://doi.org/10.1177/38.1.2294148
  25. T. Iwaki, A. Kume-Iwaki, R. K. Liem, and J. E. Goldman, Cell 57, 71 (1989) https://doi.org/10.1016/0092-8674(89)90173-6
  26. S. L. Shammas, C. A. Waudby, S. Wang, A. K. Buell, T. P. Knowles, H. Ecroyd, M. E. Welland, J. A. Carver, C. M. Dobson, and S. Meehan, Biophys. J. 101, 1681 (2011) https://doi.org/10.1016/j.bpj.2011.07.056
  27. Z. Liu, C. Wang, Y. Li, C. Zhao, T. Li, D. Li, S. Zhang, and C. Liu, J. Biol. Chem. 293, 14880 (2018) https://doi.org/10.1074/jbc.RA118.004034
  28. Z. Liu, S. Zhang, D. Li, and C. Liu, Protein Pept. Lett. 24, 315 (2017) https://doi.org/10.2174/0929866524666170206122616
  29. I. Lopez-Gonzalez, M. Carmona, L. Arregui, G. G. Kovacs, and I. Ferrer, Neuropathology 34, 517 (2014) https://doi.org/10.1111/neup.12134
  30. A. Mainz, J. Peschek, M. Stavropoulou, K. C. Back, B. Bardiaux, S. Asami, E. Prade, C. Peters, S. Weinkauf, J. Buchner, and B. Reif, Nat. Struct. Mol. Biol. 22, 898 (2015) https://doi.org/10.1038/nsmb.3108
  31. Z. Ren, M. Yang, Z. Guan, and W. Yu, Curr. Alzheimer Res. 16, 39 (2019) https://doi.org/10.2174/1567205015666181022093359
  32. S. Jehle, P. Rajagopal, B. Bardiaux, S. Markovic, R. Kuhne, J. R. Stout, V. A. Higman, R. E. Klevit, B. J. van Rossum, and H. Oschkinat, Nat. Struct. Mol. Biol. 17, 1037 (2010) https://doi.org/10.1038/nsmb.1891
  33. A. Laganowsky, J. L. Benesch, M. Landau, L. Ding, M. R. Sawaya, D. Cascio, Q. Huang, C. V. Robinson, J. Horwitz, and D. Eisenberg, Protein Sci. 19, 1031 (2010) https://doi.org/10.1002/pro.380
  34. A. J. Baldwin, G. R. Hilton, H. Lioe, C. Bagneris, J. L. Benesch, and L. E. Kay, J. Mol. Biol. 413, 310 (2011) https://doi.org/10.1016/j.jmb.2011.07.017
  35. A. J. Baldwin, H. Lioe, C. V. Robinson, L. E. Kay, and J. L. Benesch, J. Mol. Biol. 413, 297 (2011) https://doi.org/10.1016/j.jmb.2011.07.016
  36. S. P. Delbecq, S. Jehle, and R. Klevit, EMBO J. 31, 4587 (2012) https://doi.org/10.1038/emboj.2012.318
  37. R. Inoue, T. Takata, N. Fujii, K. Ishii, S. Uchiyama, N. Sato, Y. Oba, K. Wood, K. Kato, N. Fujii, and M. Sugiyama, Sci. Rep. 6, 29208 (2016) https://doi.org/10.1038/srep29208
  38. J. Lowe, D. R. Errington, G. Lennox, I. Pike, I. Spendlove, M. Landon, and R. J. Mayer, Neuropathol. Appl. Neurobiol. 18, 341 (1992) https://doi.org/10.1111/j.1365-2990.1992.tb00796.x
  39. S. Jehle, B. van Rossum, J. R. Stout, S. M. Noguchi, K. Falber, K. Rehbein, H. Oschkinat, R. E. Klevit, and P. Rajagopal, J. Mol. Biol. 385, 1481 (2009) https://doi.org/10.1016/j.jmb.2008.10.097
  40. S. Jehle, B. S. Vollmar, B. Bardiaux, K. K. Dove, P. Rajagopal, T. Gonen, H. Oschkinat, and R. E. Klevit, Proc. Natl. Acad. Sci. U. S. A. 108, 6409 (2011) https://doi.org/10.1073/pnas.1014656108
  41. B. Jovcevski, J. Andrew Aquilina, J. L. P. Benesch, and H. Ecroyd, Cell Stress Chaperones 23, 827 (2018) https://doi.org/10.1007/s12192-018-0889-y
  42. R. A. Dubin, E. F. Wawrousek, and J. Piatigorsky, Mol. Cell. Biol. 9, 1083 (1989) https://doi.org/10.1128/MCB.9.3.1083
  43. J. Piatigorsky and G. J. Wistow, Cell 57, 197 (1989) https://doi.org/10.1016/0092-8674(89)90956-2
  44. H. Shinohara, Y. Inaguma, S. Goto, T. Inagaki, and K. Kato, J. Neurol. Sci. 119, 203 (1993) https://doi.org/10.1016/0022-510X(93)90135-L
  45. N. Tomokane, T. Iwaki, J. Tateishi, A. Iwaki, and J. E. Goldman, Am. J. Pathol. 138, 875 (1991)
  46. G. Esposito, M. Garvey, V. Alverdi, F. Pettirossi, A. Corazza, F. Fogolari, M. Polano, P. P. Mangione, S. Giorgetti, M. Stoppini, A. Rekas, V. Bellotti, A. J. Heck, and J. A. Carver, J. Biol. Chem. 288, 17844 (2013) https://doi.org/10.1074/jbc.M112.448639
  47. T. P. Knowles, C. A. Waudby, G. L. Devlin, S. I. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, Science 326, 1533 (2009) https://doi.org/10.1126/science.1178250
  48. A. Rekas, L. Jankova, D. C. Thorn, R. Cappai, and J. A. Carver, FEBS J. 274, 6290 (2007) https://doi.org/10.1111/j.1742-4658.2007.06144.x
  49. T. M. Treweek, S. Meehan, H. Ecroyd, and J. A. Carver, Cell. Mol. Life Sci. 72, 429 (2015) https://doi.org/10.1007/s00018-014-1754-5
  50. C. A. Waudby, T. P. Knowles, G. L. Devlin, J. N. Skepper, H. Ecroyd, J. A. Carver, M. E. Welland, J. Christodoulou, C. M. Dobson, and S. Meehan, Biophys. J. 98, 843 (2010) https://doi.org/10.1016/j.bpj.2009.10.056
  51. K. J. Binger, H. Ecroyd, S. Yang, J. A. Carver, G. J. Howlett, and M. D. Griffin, FASEB J. 27, 1214 (2013) https://doi.org/10.1096/fj.12-220657
  52. J. Bhattacharyya, E. G. Padmanabha Udupa, J. Wang, and K. K. Sharma, Biochemistry 45, 3069 (2006) https://doi.org/10.1021/bi0518141
  53. Y. Kanno and H. Matsuno, Curr. Pharm. Des. 12, 887 (2006) https://doi.org/10.2174/138161206776056047
  54. E. F. Lim, S. T. Nakanishi, V. Hoghooghi, S. E. Eaton, A. L. Palmer, A. Frederick, J. A. Stratton, M. G. Stykel, P. J. Whelan, D. W. Zochodne, J. Biernaskie, and S. S. Ousman, Proc. Natl. Acad. Sci. U. S. A. 114, E1707 (2017) https://doi.org/10.1073/pnas.1612136114
  55. V. S. Reddy and G. B. Reddy, Curr. Mol. Med. 15, 47 (2015) https://doi.org/10.2174/1566524015666150114112853
  56. M. Raju, P. Santhoshkumar, and K. K. Sharma, Biochim. Biophys. Acta 1860, 246 (2016) https://doi.org/10.1016/j.bbagen.2015.06.010
  57. S. K. Gruvberger-Saal and R. Parsons, J. Clin. Invest. 116, 30 (2006) https://doi.org/10.1172/JCI27462
  58. J. V. Moyano, J. R. Evans, F. Chen, M. Lu, M. E. Werner, F. Yehiely, L. K. Diaz, D. Turbin, G. Karaca, E. Wiley, T. O. Nielsen, C. M. Perou, and V. L. Cryns, J. Clin. Invest. 116, 261 (2006) https://doi.org/10.1172/JCI25888
  59. R. Bakthisaran, R. Tangirala, and C. M. Rao, Biochim. Biophys. Acta 1854, 291 (2015) https://doi.org/10.1016/j.bbapap.2014.12.019
  60. S. P. Delbecq and R. E. Klevit, J. Biol. Chem. 294, 3261 (2019) https://doi.org/10.1074/jbc.RA118.003156