DOI QR코드

DOI QR Code

In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions

  • Sugiki, Toshihiko (Institute for Protein Research, Osaka University) ;
  • Lin, Yuxi (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Institute) ;
  • Lee, Young-Ho (Protein Structure Group, Division of Bioconvergence Analysis, Korea Basic Science Institute)
  • Received : 2019.03.08
  • Accepted : 2019.03.20
  • Published : 2019.03.20

Abstract

Studies on the interactions of proteins with partner molecules at the atomic resolution are essential for understanding the biological function of proteins in cells and for developing drug molecules. Solution NMR spectroscopy has shown remarkably useful capability for investigating properties on the weak to strong intermolecular interactions in both diluted and crowded solution such as cell lysates. Of note, the state-of-the-art in-cell NMR method has made it possible to obtain atomistic information on natures of intermolecular interactions between target proteins with partner molecules in living cells. In this mini-review, we comprehensively describe the several technological advances and developments in the in-cell NMR spectroscopy.

Keywords

JGGMB2_2019_v23n1_33_f0001.png 이미지

Figure 1. Illustration of sample preparation for in-cell NMR experiments. (A) Isotopically (e.g. 13C, 15N, or 19F)-labeled target proteins are overexpressed in host cells (e.g. Escherichia coli) and NMR signals of the target protein (e.g. two-dimenstional 1H-15N heteronuclear single quantum coherence (HSQC) are observed in a NMR spectrum. (B) Isotopically-labeled target protein (the molecule colored by dark gray) and unlabeled partner protein (the molecule with light gray) are concurrently overexpressed in host cells. By comparing the intensity and the chemical shift of NMR signals in spectra with and without over-expression of partner molecules, interaction sites on the target proteins for partners in living cells can be revealed. The numbers of "1" and "2" in the host cell are correspond to the "Signal 1" and "Signal 2" denoted on the schematic illustration of in NMR spectra on right, respectively. In this case, a region around the residue of "Signal 1" should be a binding site as the change in the chemical shift of only "Signal 1" is observed.

JGGMB2_2019_v23n1_33_f0002.png 이미지

Figure 2. Valiation of sample preparation and strategies for in-cell NMR experiments. (A) Isotopically-labeled target proteins are first overexpressed by using an appropriate protein expression system (e.g. Escherichia coli (E. coli)), and purified target proteins are introduced into host cells for in-cell NMR experiments. (Upper left) In the case of oocyte as a host cell, the target proteins are introduced into cells by microinjection. (Upper right) In many cases of mammalian cells, the target proteins are penetrated into cells by using pore-forming toxin (e.g. Streptlysin O (SLO)), (lower right) by performing electroporation, or (lower left) aby fusing a cell-penetrating peptide (CPP) (e.g. Tat peptide) to the target protein. CPP can be eliminated in the host cells when CPP-fused target proteins eneter successfully cells.

References

  1. Z. Serber, and V. Dotsch, Biochemistry 40, 14317 (2001) https://doi.org/10.1021/bi011751w
  2. Z. Serber, R. Ledwidge, S. Miller, and V. Dotsch, J. Am. Chem. Soc. 123, 8895 (2001) https://doi.org/10.1021/ja0112846
  3. A. Reckel, F. Lohr, and V. Dotsch, Chembiochem. 6, 1601 (2005) https://doi.org/10.1002/cbic.200500076
  4. H. Tochio, Curr. Opin. Chem. Biol. 16, 609 (2012) https://doi.org/10.1016/j.cbpa.2012.10.022
  5. C. B. Kang, Int. J. Mol. Sci. 20, 139 (2019) https://doi.org/10.3390/ijms20010139
  6. T. Sugiki, T. Fujiwara, and C. Kojima, Expert Opin. Drug Discov. 9, 1189 (2014) https://doi.org/10.1517/17460441.2014.941801
  7. C. Barnes, and G. Pielak, Proteins 79, 347 (2011) https://doi.org/10.1002/prot.22906
  8. G. Xu, Y. Ye, X. Liu, S. Cao, Q. Wu, and K. Cheng, Biochemistry 53, 1971 (2014) https://doi.org/10.1021/bi500079u
  9. T. Ikeya, A. Sasaki, D. Sakakibara, Y. Shigemitsu, J. Hamatsu, T. Hanashima, M. Mishima, M. Yoshimasu, N. Hayashi, T. Mikawa, D. Nietlispach, M. Walchli, B. O. Smith, M. Shirakawa, P. Guntert, and Y. Ito, Nat. Protoc. 5, 1051 (2010) https://doi.org/10.1038/nprot.2010.69
  10. Y. Ito, T. Mikawa, and B. O. Smith, Methods Mol. Biol. 895, 19 (2012) https://doi.org/10.1007/978-1-61779-927-3_2
  11. F. X. Theillet, A. Binolfi, T. Frembgen-Kesner, K. Hingorani, M. Sarkar, C. Kyne, C. Li, P. B. Crowley, L. Gierasch, G. J. Pielak, A. H. Elcock, A. Gershenson, and P. Selenko, Chem. Rev. 114, 6661 (2014) https://doi.org/10.1021/cr400695p
  12. J. Danielsson, X. Mu, L. Lang, H. Wang, A. Binolfi, F. X. Theillet, B. Bekei, D. T. Logan, P. Selenko, H. Wennerstrom, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 112, 12402 (2015) https://doi.org/10.1073/pnas.1511308112
  13. S. Majumder, C. M. DeMott, S. Reverdatto, D. S. Burz, and A. Shekhtman, Biochemistry 55, 4568 (2016) https://doi.org/10.1021/acs.biochem.6b00330
  14. J. Hamatsu, D. O'Donovan, T. Tanaka, T. Shirai, Y. Hourai, T. Mikawa, T. Ikeya, M. Mishima, W. Boucher, B. O. Smith, E. D. Laue, M. Shirakawa, and Y. Ito, J. Am. Chem. Soc. 135, 1688 (2013) https://doi.org/10.1021/ja310928u
  15. D. Sakakibara, A. Sasaki, T. Ikeya, J. Hamatsu, T. Hanashima, M. Mishima, M. Yoshimaru, N. Hayashi, T. Mikawa, M. Walchli, B. O. Smith, M. Shirakawa, P. Guntert, and Y. Ito, Nature 458, 102 (2009) https://doi.org/10.1038/nature07814
  16. K. Inomata, A. Ohno, H. Tochio, S. Isogai, T. Tenno, I. Nakase, T. Takeuchi, S. Futaki, Y. Ito, H. Hiroaki, and M. Shirakawa, Nature 458, 106 (2009) https://doi.org/10.1038/nature07839
  17. S. Ogino, S. Kubo, R. Umemoto, S. Huang, N. Nishida, and I. Shimada, J. Am. Chem. Soc. 131, 10834 (2009) https://doi.org/10.1021/ja904407w
  18. L. Barbieri, E. Luchinat, and L. Banci, Nat. Protoc. 11, 1101 (2016) https://doi.org/10.1038/nprot.2016.061
  19. F. X. Theillet, A. Binolfi, B. Bekei, A. Martorana, H. M. Rose, M. Stuiver, S. Verzini, D. Lorenz, M. van Rossum, D. Goldfarb, and P. Selenko, Nature 530, 45 (2016) https://doi.org/10.1038/nature16531
  20. A. Binolfi, A. Limatola, S. Verzini, J. Kosten, F. X. Theillet, H. M. Rose, B. Bekei, M. Stuiver, M. van Rossum, and P. Selenko, Nat. Commun. 25, 10251 (2016)
  21. S. Kubo, N. Nishida, Y. Udagawa, O. Takarada, S. Ogino, and I. Shimada, Angew. Chem. Int. Ed. Engl. 52, 1208 (2013) https://doi.org/10.1002/anie.201207243
  22. E. Luchinat, L. Barbieri, and L. Banci, Sci. Rep. 12, 17433 (2017)
  23. E. Luchinat, and L. Banci, Acc. Chem. Res. 51, 1550 (2018) https://doi.org/10.1021/acs.accounts.8b00147
  24. Z. Serber, W. Straub, L. Corsini, A. M. Nomura, N. Shimba, C. S. Craik, P. Ortiz de Montellano, and V. Dotsch, J. Am. Chem. Soc. 126, 7119 (2004) https://doi.org/10.1021/ja049977k
  25. Z. Serber, P. Selenko, R. Hansel, S. Reckel, F. Lohr, J. E. Ferrell Jr, G. Wagner, and V. Dotsch, Nat. Protoc. 1, 2701 (2006) https://doi.org/10.1038/nprot.2006.181
  26. S. Reckel, R. Hansel, F. Lohr, and V. Dotsch, Prog. Nucl. Magn. Reson. Spectrosc. 51, 91 (2007) https://doi.org/10.1016/j.pnmrs.2007.02.002
  27. D. S. Burz, K. Dutta, D. Cowburn, and A. Shekhtman, Nat. Methods 3, 91 (2006) https://doi.org/10.1038/nmeth851
  28. D. S. Burz, K. Dutta, D. Cowburn, and A. Shekhtman, Nat. Protoc. 1, 146 (2006) https://doi.org/10.1038/nprot.2006.23
  29. J. Xue, D. S. Burz, and A. Shekhtman, Adv. Exp. Med. Biol. 992, 17 (2012) https://doi.org/10.1007/978-94-007-4954-2_2
  30. D. S. Burz, and A. Shekhtman, Curr. Protoc. Protein Sci. 61, UNIT 17.11 (2010)
  31. X. Mu, S. Choi, L. Lang, D. Mowray, N. V. Dokholyan, J. Danielsson, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 114, E4556 (2017) https://doi.org/10.1073/pnas.1621227114
  32. J. Xie, R. Thapa, S. Reverdatto, and D. S. Burz, J. Med. Chem. 52, 3516 (2009) https://doi.org/10.1021/jm9000743
  33. S. Rahman, Y. Byun, M. I. Hassan, J. Kim, and V. Kumar, Biochim. Biophys. Acta 1865, 547 (2017) https://doi.org/10.1016/j.bbapap.2017.02.018
  34. C. M. DeMott, R. Girardin, J. Cobbert, S. Reverdatto, and D. S. Burz, ACS Chem. Biol. 13, 733 (2018) https://doi.org/10.1021/acschembio.7b00879
  35. T. Sugiki, K. Furuita, T. Fujiwara, and C. Kojima, Molecules 23, E148 (2018) https://doi.org/10.3390/molecules23010148