DOI QR코드

DOI QR Code

Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte

탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석

  • Kim, Chang Hyun (Division of Energy and Environmental Engineering, Daejin University) ;
  • Kim, Yong Ryeol (Division of Energy and Environmental Engineering, Daejin University) ;
  • Jeong, Hyeon Taek (Division of Energy and Environmental Engineering, Daejin University)
  • 김창현 (대진대학교 에너지환경공학부) ;
  • 김용렬 (대진대학교 에너지환경공학부) ;
  • 정현택 (대진대학교 에너지환경공학부)
  • Received : 2019.03.05
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

In this study, flexible supercapacitor based on the all solid state electrolyte with PVA (polyvinyl alcohol)-$H_3PO_4$, ionic liquid as a BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate) and reduced graphene oxide/conductive polymer composite was fabricated and characterized electrochemical properties with function of its flexibility. In order to measure and compare that electrochemical performances (including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge,after 0~100th bending test) of prepared flexible supercapacitor based on reduced graphene oxide/conducting polymer composite and all solid state electrolyte, we have conducted press machine with constant pressure ( 0.01/cm2) for $100^{th}$ bending test. As a result, specific capacitance of the flexible supercapacitor was 43.9 F/g which value decreased to 42.0 and 40.1 F/g after 50 and $100^{th}$ bending test, respectively. This result exhibited that decreased electrochemical property of the flexible supercapacitor effected on physical stress on the electrode after repeated bending test. In addition, we have measured that electrode surface morphology by SEM to prove its decreased electrochemical property of the flexible supercapacitor after prolonged bending test.

본 연구에서는 "이온젤"이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol)-$H_3PO_4$의 고체 전해질에 이온성 액체 $BMIMBF_4$ (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전고체 전해질과 환원된 그래핀 옥사이드/전도성 고분자 복합재료 기반의 전극 재료를 이용하여 유연성을 갖는 슈퍼커패시터를 제작 하였으며, 유연성에 따른 전기화학적 특성을 분석하여 보았다. 환원된 그래핀 옥사이드/전도성 고분자 복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성을 유연성에 따라서 측정하기 위해서 프레스로 $0.01kg/cm^2$의 일정한 압력으로 최대 100회 까지 굽힘 시험(bending test)을 진행 하였으며, 0~100 회의 굽힘 시험 이후에 순환 전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충 방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 유연성 슈퍼커패시터의 초기 전기용량은 43.9 F/g으로 확인 할 수 있었고, 이 값은 50회, 100회의 굽힘 시험 후에 각각 42.0F/g, 40.1F/g로 감소하는 현상을 확인할 수 있었다. 이러한 결과로 미루어 보아 물리적인 응력이 슈퍼 커패시터의 전기화학적 특성 감소에 영향을 주는 것으로 사료되며 또한, 굽힘 횟수에 따른 슈퍼커패시터의 전기화학적 특성 감소 원인을 확인하기 위해서 굽힘 시험 전과 후의 전극표면을 전자주사 현미경으로 관찰하여 보았다.

Keywords

HGOHBI_2019_v36n1_200_f0001.png 이미지

Fig. 1. Cyclic voltammetry(CV) of the supercapacitor as a function of the bending cycle.

HGOHBI_2019_v36n1_200_f0002.png 이미지

Fig. 2. Electrochemical impedance spectroscopy(EIS) of the supercapacitor as a function of the bending cycle.

HGOHBI_2019_v36n1_200_f0003.png 이미지

Fig. 3. Galvanostatic charge/discharge(GCD)graphs of the supercapacitor as a function of the bending cycle.

HGOHBI_2019_v36n1_200_f0004.png 이미지

Fig. 4. Specific capacitance of the supercapacitor as a function of the bending cycle.

HGOHBI_2019_v36n1_200_f0005.png 이미지

Fig. 5. SEM images of the electrode surface; (A)unbented, (b) after 100 bending cycle.

References

  1. K. Zin Htut, Minjae kim, Eunsoo Lee, Sung Hyeon Baeck, Sang Eun Shim, "Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors", Synthetic Metals, Vol. 227, pp. 61-70 (2017). https://doi.org/10.1016/j.synthmet.2017.03.005
  2. Jizhang Chen, Kaili Fang, Qiongyu Chen, Junling Xu, Ching-Ping Wong, "Integrated paper electrodes derived from cotton stalks for high-performanceflexible supercapacitors", Nano Energy, Vol. 53, pp. 337-344 (2018). https://doi.org/10.1016/j.nanoen.2018.08.056
  3. Xinhua Liu, Max Naylor Marlow, Samuel J. Cooper, Bowen Song, Xiaolong Chen, Nigel P. Brandon, Billy Wu, "Flexible all-fiber electrospun supercapacitor", Journal of Power Sources, Vol. 384, pp. 264-269 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.081
  4. Periyasamy Sivakumar, Milan Jana, Manikantan Kota, Min Gyu Jung, Aharon Gedanken, Ho Seok Park, "Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application", Journal of Power Sources, Vol. 402, pp. 147-156 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.026
  5. Graeme A. Snook, Pon Kao, Adam S. Best, "Conducting-polymer-based supercapacitor devices and electrodes", Journal of Power Sources, Vol. 196, pp. 1-12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084
  6. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plee, M. Mastragostino, S. Passerini, "High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte", Journal of Power Sources, Vol. 165, pp. 922-927 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
  7. Jisoo Park, Young Shik Cho, Sae Jin Sung, Minhoo Byeon, Seung Jae Yang, "Characteristics tuning of graphene-oxide-based-graphene to various end-uses", Energy Storage Materials, Vol. 14, pp. 8-21 (2018). https://doi.org/10.1016/j.ensm.2018.02.013
  8. Fuhui Zheng, Yanxia Li, Xusheng Wang, "Study on effects of applied current and voltage on the ageing of supercapacitors", Electrochimica Acta, Vol. 276, pp. 343-351 (2018). https://doi.org/10.1016/j.electacta.2018.04.153
  9. A. Tahri, H. El Fadil, F.Z. Belhaj, K. Gaouzi, A. Rachid, F. Giri, F.Z. Chaoui, "Management of fuel cell power and supercapacitor state-of-charge forelectric vehicles", Electric Power Systems Research, Vol. 160, pp. 89-98 (2018). https://doi.org/10.1016/j.epsr.2018.02.003
  10. S. Korkmaz, F. Meydaneri Tezel, I.A. Kariper, "Synthesis and Characterization of GO/V2O5 Thin Film Supercapacitor", Synthetic Metals, Vol. 242, pp. 37-48(2018). https://doi.org/10.1016/j.synthmet.2018.05.002
  11. Nali Chen, Yapeng Ren, Peipei Kong, Lin Tan, Huixia Feng, Yongchun Luo, "In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors", Applied Surface Science, Vol. 392, pp. 71-79 (2017). https://doi.org/10.1016/j.apsusc.2016.07.168
  12. Yuki Uchida, Enno Katelhon, Richard G. Compton, "Cyclic voltammetry with non-triangular waveforms: Electrochemically reversible systems", Journal of Electroanalytical Chemistry, Vol. 801, pp. 381-387 (2017). https://doi.org/10.1016/j.jelechem.2017.08.008
  13. Minjae Kim, Yeongseon Kim, Kyung Min Lee, Seon Young Jeong, Eunsoo Lee, Sung Hyeon Baeck, Sang Eun Shim, "Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor", Carbon, Vol. 99, pp. 607-618 (2016). https://doi.org/10.1016/j.carbon.2015.12.068
  14. Shu-JuanBao, Chang MingLi, Chun-XianGuo, Yan Qiao, "Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors", Journal of Power Sources, Vol. 180, pp. 676-681 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.085
  15. Yang Zhou, Xuefeng Zou, Zhiheng Zhao, Bin Xiang, Yuxin Zhang, "CoO/rGO composite prepared by a facile direct-flame approach for highpower supercapacitors", Ceramics International, Vol. 44, pp.16900-16907 (2018). https://doi.org/10.1016/j.ceramint.2018.06.128
  16. Wenling Wu, Yanfeng Li, Liuqing Yang, Yingxia Ma, Duo Pan, Yantao Li, "A Facile One-pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/ Polyaniline Composite for Supercapacitors", Electrochimica acta, Vol. 139, pp. 117-126 (2014). https://doi.org/10.1016/j.electacta.2014.06.166