DOI QR코드

DOI QR Code

Optical Design of a Reflecting Omnidirectional Vision System for Long-wavelength Infrared Light

원적외선용 반사식 전방위 비전 시스템의 광학 설계

  • Ju, Yun Jae (Department of Photonics and Sensors / Department of Computer, Communication and Unmanned Technology, Graduate School, Hannam University) ;
  • Jo, Jae Heung (Department of Photonics and Sensors / Department of Computer, Communication and Unmanned Technology, Graduate School, Hannam University) ;
  • Ryu, Jae Myung (Department of Optical Engineering, Kumoh National Institute of Technology)
  • 주윤재 (한남대학교 대학원 광.센서공학과 / 컴퓨터통신무인기술학과) ;
  • 조재흥 (한남대학교 대학원 광.센서공학과 / 컴퓨터통신무인기술학과) ;
  • 유재명 (금오공과대학교 광시스템공학과)
  • Received : 2019.02.07
  • Accepted : 2019.03.28
  • Published : 2019.04.25

Abstract

A reflecting omnidirectional optical system with four spherical and aspherical mirrors, for use with long-wavelength infrared light (LWIR) for night surveillance, is proposed. It is designed to include a collecting pseudo-Cassegrain reflector and an imaging inverse pseudo-Cassegrain reflector, and the design process and performance analysis is reported in detail. The half-field of view (HFOV) and F-number of this optical system are $40-110^{\circ}$ and 1.56, respectively. To use the LWIR imaging, the size of the image must be similar to that of the microbolometer sensor for LWIR. As a result, the size of the image must be $5.9mm{\times}5.9mm$ if possible. The image size ratio for an HFOV range of $40^{\circ}$ to $110^{\circ}$ after optimizing the design is 48.86%. At a spatial frequency of 20 lp/mm when the HFOV is $110^{\circ}$, the modulation transfer function (MTF) for LWIR is 0.381. Additionally, the cumulative probability of tolerance for the LWIR at a spatial frequency of 20 lp/mm is 99.75%. As a result of athermalization analysis in the temperature range of $-32^{\circ}C$ to $+55^{\circ}C$, we find that the secondary mirror of the inverse pseudo-Cassegrain reflector can function as a compensator, to alleviate MTF degradation with rising temperature.

야간 감시를 위해 원적외선에서 사용하는 4개의 구면 및 비구면 거울을 갖는 반사식 전방위 비전 시스템 광학계를 제안한다. 이 반사식 전방위 비전 시스템은 유사 카세그레인식 수광부 반사경 시스템과 역 유사 카세그레인식 결상부 반사경 시스템으로 설계되었으며, 그에 따른 설계 과정과 성능 분석을 상세히 제시한다. 이 비전 시스템의 반화각과 F-수는 각각 $40{\sim}110^{\circ}$와 1.56으로 설정하였다. 그리고 원적외선 파장 영역에서 비전 시스템을 사용하기 위해서 상의 크기가 원적외선용 마이크로 볼로미터의 크기와 가능한 같아야 하므로 상의 크기를 $5.9mm{\times}5.9mm$에 맞추어 설계를 진행하였다. 최적화 설계 후 $40{\sim}110^{\circ}$의 반화각 범위에서의 상 크기의 비율은 48.86%이며, 나이퀴스트 주파수인 20 lp/mm의 공간주파수에서 원적외선의 변조전달함수 값이 0.381에 도달하였다. 또한 20 lp/mm의 공간주파수에서 원적외선 영역에 대한 공차의 누적 확률은 99.75%였다. 또한 역 유사 카세그레인식 구조의 결상부 부경을 온도 변화에 따른 변조전달함수 값을 개선시키는 보상자로 선택하여 반사식 전방위 비전 시스템의 운용 온도 범위인 $-32^{\circ}C$에서 $+55^{\circ}C$의 온도 범위에서 비열화 해석 및 보상화 과정을 진행하였다.

Keywords

KGHHBU_2019_v30n2_37_f0001.png 이미지

Fig. 1. Geometrical ray tracing of the principal ray incident to the collecting reflector system of a reflecting omnidirectional optical system with a wide field of view. (a) Principal ray entering at an upward angle and (b) principal ray entering at a downward angle.

KGHHBU_2019_v30n2_37_f0002.png 이미지

Fig. 2. Geometrical ray tracing of the principal ray that is incident to the imaging reflector system of a reflecting omnidirectional optical system to focus an image to an optical sensor.

KGHHBU_2019_v30n2_37_f0003.png 이미지

Fig. 3. Paraxial ray tracing of the optical path in the collecting reflector system and imaging reflector system. Although the geometrical arrangement of these mirrors is M2, M1, M3, and M4 in order, rays strike in the order of M1, M2, M4, and M3.

KGHHBU_2019_v30n2_37_f0004.png 이미지

Fig. 4. Optical path of the initial design of the reflecting omnidirectional optical system with four spherical mirrors with various fields.

KGHHBU_2019_v30n2_37_f0005.png 이미지

Fig. 5. Optical path of the reflecting omnidirectional optical system composed of a spherical mirror and three aspherical mirrors designed by the optimization design method starting from the initial design.

KGHHBU_2019_v30n2_37_f0006.png 이미지

Fig. 6. Various MTFs as a function of spatial frequency from 0 to 28 lp/mm, which are dependent on fields in LWIR ranges of the reflecting omnidirectional optical system obtained by the optimized optical design. The red, green, blue, and brown curves are MTF curves of 0.36 field, 0.55 field, 0.73 field, and 1.00 field, respectively, and the black curve corresponds to the MTF in case at the diffraction limit. The solid and dotted curves depict the MTFs of the meridional and sagittal ray, respectively.

KGHHBU_2019_v30n2_37_f0007.png 이미지

Fig. 7. Spot diagram showing the position and shape of the ray arriving at the effective area of an imaging sensor in the optimized design.

KGHHBU_2019_v30n2_37_f0008.png 이미지

Fig. 9. MTFs according to various fields before (small graphs) and after (large graphs) performing the compensation process by the athermalization analysis for the LWIR ranges at (a) -32°C and (b) 55°C. We choose M3, the nearest component to the image sensor, as the compensator.

KGHHBU_2019_v30n2_37_f0009.png 이미지

Fig. 10. Variation of the image distance (black triangles) and the moving distance of compensator (black squares) by means of the athermalization analysis.

KGHHBU_2019_v30n2_37_f0010.png 이미지

Fig. 11. EFL variation before (black squares) and after (black triangles) the compensating process in the range of temperature from -32°C to 55°C.

KGHHBU_2019_v30n2_37_f0011.png 이미지

Fig. 8. Cumulative probability as a function of MTF according to various fields in LWIR ranges. F1 (red curve), F2 (green curve), F3 (blue curve), and F4 (pink curve) correspond to cumulative probabilities, which depict the tolerance of MTF according to 0.36 field, 0.55 field, 0.73 field, and 1.0 field, respectively.

Table 1. Various specifications of the reflecting omnidirectional optical system for long wavelength infrared determined by initial optical system design

KGHHBU_2019_v30n2_37_t0001.png 이미지

Table 2. RDN data according to initial design of the reflecting omnidirectional optical system

KGHHBU_2019_v30n2_37_t0002.png 이미지

Table 3. RDN data according to optimized design of the reflecting omnidirectional optical system

KGHHBU_2019_v30n2_37_t0003.png 이미지

Table 4. Aspheric coefficient data according to optimized design of the reflecting omnidirectional optical system

KGHHBU_2019_v30n2_37_t0004.png 이미지

References

  1. J. H. Jo, S. Lee, H. J. Seo, J. H. Lee, and J. M. Kim, "Design of omnidirectional camera lens system with catadioptic system," Proc. SPIE 8788, 87882Q (2013).
  2. D. P. Kuban, H. L. Martin, S. D. Zimmerman, and N. Busico, "Omniview motionless camera surveillance system," U.S. Patent No. 5359363 A (1994).
  3. S. K. Nayar, "Catadioptric omnidirectional camera," in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (USA, Jun. 1997), pp. 482-488.
  4. D. G. Aliaga and I. B. Carlbom, "Camera model and calibration procedure for omnidirectional paraboloidal catadioptric cameras," U.S. Patent No. 20030004694 A1 (2002).
  5. G. Kweon (NANOPHOTONICS CO., LTD), "Method for obtaining a composite image using rotationally symmetrical wide-angle lenses, imaging system for same, and cmos image sensor for image-processing using hardware," U.S. Patent No.20120098926 A1 (2012).
  6. J. H. Lee, "Omnidirectional optical lens," KR. Patent No. 1020110131472 (2011).
  7. HEXHIVE CO., LTD, "Catadioptric Type Omnidirectional Optic Lens and Omni-directional Camera System Using the Same," KR. Patent No. 1020150178832 (2015).
  8. B. Yalin, "Parameter Extraction and Image Enhancement for catadioptric omnidirectional cameras," Master's Degree Thesis, The Middle East Technical University, Ankara, (2005), p. 114
  9. H. Y. Jung and J. U. Lee, "Optical design of a catadioptric panoramic lens system," J. Ind. Sci., Cheongju Univ. 30 (2013).
  10. J. W. Kim, J. M. Ryu, and Y.-J. Kim, "Tolerance analysis and compensation method using zernike polyomial coefficients of omni-directional and fisheye varifocal lens," J. Opt. Soc. Korea 18, 720-731 (2014). https://doi.org/10.3807/JOSK.2014.18.6.720
  11. H. J. Seo and J. H. Jo, "Catadioptric omnidirectional optical system using a spherical mirror with a central hole and a plane mirror for visible light," Korean J. Opt. Photon. 26, 88-97 (2015). https://doi.org/10.3807/KJOP.2015.26.2.088
  12. K. H. Lee, J. G. Kang, and J. H. Jo, "Optical design of a catadioptric omnidirectional LWIR vision system with F/1.4 and a field of view of $30^{\circ}{\sim}110^{\circ}$ and analysis of its tolerance and athermalization," New Phys.: Sae Mulli. 67, 754-764 (2017). https://doi.org/10.3938/NPSM.67.754
  13. T. G. Park, "Design of omni-directional optical system using only 4-mirrors in two ranges of long wave infrared and visible light," Master's Degree Thesis, Hannam University, Daejeon (2017).
  14. J. M. Lee, "Optical system design and analysis of an F/1.8 catadioptric panoramic camera," Master's Degree Thesis, Dankook University, Yongin (2014).
  15. J. G. Kang, J. M. Ryu, and J. H. Jo, "Design of IR omni-directional optical system for night vision and surveillance of defense and safety," Proc. SPIE 9451, 94511Y (2015).
  16. Warren J. Smith, Modern Lens Design (second edition), (McGraw-Hill, New York, 2005), p. 67.
  17. J. X. Cai, M. Guo, and G. Y. Jin, "Numerical simulation of thermal stress damage in 1064 nm anti-reflection fused silica by millisecond pulsed laser," Optik 136, 144-150 (2017). https://doi.org/10.1016/j.ijleo.2017.02.019