DOI QR코드

DOI QR Code

Dispersion Stability and Mechanical Properties of ZrO2/High-temp Composite Resins by Nano- and Micro-particle Ratio for Stereolithography 3D Printing

나노 및 마이크로 입자 비율에 따른 광조형 3D 프린팅용 ZrO2/High-temp 복합 수지의 분산 안정성 및 기계적 특성

  • Song, Se Yeon (Energy Storage Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Min Soo (Department of Mechanical System and Design Engineering, Seoul National University of Science and Technology) ;
  • Yun, Ji Sun (Energy Storage Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • 송세연 (한국세라믹기술원 에너지저장소재센터) ;
  • 박민수 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 윤지선 (한국세라믹기술원 에너지저장소재센터)
  • Received : 2019.02.23
  • Accepted : 2019.03.18
  • Published : 2019.04.27

Abstract

This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated $ZrO_2$ ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated $ZrO_2$ particles are observed by FE-TEM and FT-IR. The rheological properties of VTES-coated $ZrO_2/High-temp$ composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3D-printed objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated $ZrO_2$ ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.

Keywords

References

  1. Z. C. Eckel, C. Zhou, J. H. Martin, A. J. Jacobsen, W. B. Carter and T. A. Schaedler, Science, 351, 58 (2016). https://doi.org/10.1126/science.aad2688
  2. S. Zhang, N. Sha and Z. Zhao, J. Eur. Ceram. Soc., 37, 1607 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.12.013
  3. T. Chartier, C. Dupas, P. M. Geffroy, V. Pateloup, M. Colas, J. Cornette and S. G. Fritsch, J. Eur. Ceram. Soc., 37, 4431 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.05.050
  4. T. Chartier, C. Dupas, M. Lasgorceix, J. Brie, E. Champion, N. Delhote and C. Chaput, J. Ceram. Sci. Technol., 6, 95 (2016).
  5. C.-J. Bae, Ph.D. Thesis, Michigan University, Michigan, USA (2008).
  6. H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song and Y. Chen, Ceram. Int., 42, 17290 (2016). https://doi.org/10.1016/j.ceramint.2016.08.024
  7. S. Spath, P. Drescher and H. Seitz, Materials, 8, 4720 (2015). https://doi.org/10.3390/ma8084720
  8. S. Liu, K. Li, S. Chen, J. Yang, Y. Jia, L. Wang and L. Ren, J. Mater. Sci., 54, 3309 (2018).
  9. S. Y. Song, M. S. Park, J. W. Lee and J. S. Yun, Nanomaterials, 8, 93 (2018). https://doi.org/10.3390/nano8020093
  10. J. Sun, J. Binner and J. Bai, J. Eur. Ceram. Soc., 39, 1660 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.10.024
  11. S. Y. Song, M. S. Park, J. W. Lee and J. S. Yun, Mater. Chem. Phys., 216, 446 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.023
  12. M. A. Sibeko and A. S. Luyt, Polym. Bull., 71, 637 (2014). https://doi.org/10.1007/s00289-013-1083-0