DOI QR코드

DOI QR Code

QUANTUM CODES WITH IMPROVED MINIMUM DISTANCE

  • Kolotoglu, Emre (Department of Mathematics Yildiz Technical University) ;
  • Sari, Mustafa (Department of Mathematics Yildiz Technical University)
  • Received : 2018.04.02
  • Accepted : 2018.09.17
  • Published : 2019.05.31

Abstract

The methods for constructing quantum codes is not always sufficient by itself. Also, the constructed quantum codes as in the classical coding theory have to enjoy a quality of its parameters that play a very important role in recovering data efficiently. In a very recent study quantum construction and examples of quantum codes over a finite field of order q are presented by La Garcia in [14]. Being inspired by La Garcia's the paper, here we extend the results over a finite field with $q^2$ elements by studying necessary and sufficient conditions for constructions quantum codes over this field. We determine a criteria for the existence of $q^2$-cyclotomic cosets containing at least three elements and present a construction method for quantum maximum-distance separable (MDS) codes. Moreover, we derive a way to construct quantum codes and show that this construction method leads to quantum codes with better parameters than the ones in [14].

Keywords

Table 1. Some parameters of quantum codes obtained by Theorem 3.2

E1BMAX_2019_v56n3_609_t0001.png 이미지

Table 2. A comparison between our parameters and ones in [15]

E1BMAX_2019_v56n3_609_t0002.png 이미지

Table 3. A comparison of quantum codes of length 32 over F9

E1BMAX_2019_v56n3_609_t0003.png 이미지

Table 4. A comparison of quantum codes of length 35 over F13

E1BMAX_2019_v56n3_609_t0004.png 이미지

Table 5. List of some quantum codes that can not be obtained via the construction given in [15]

E1BMAX_2019_v56n3_609_t0005.png 이미지

References

  1. S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inform. Theory 53 (2007), no. 3, 1183-1188. https://doi.org/10.1109/TIT.2006.890730
  2. A. Ashikhmin and E. Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inform. Theory 47 (2001), no. 7, 3065-3072. https://doi.org/10.1109/18.959288
  3. N. Aydin, I. Siap, and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr. 24 (2001), no. 3, 313-326. https://doi.org/10.1023/A:1011283523000
  4. J.-Z. Chen, J.-P. Li, and J. Lin, New optimal asymmetric quantum codes derived from negacyclic codes, Internat. J. Theoret. Phys. 53 (2014), no. 1, 72-79. https://doi.org/10.1007/s10773-013-1784-z
  5. J. Gao and Y.Wang, Quantum codes derived from negacyclic codes, Internat. J. Theoret. Phys. 57 (2018), no. 3, 682-686. https://doi.org/10.1007/s10773-017-3599-9
  6. L. Hu, Q. Yue, and X. Zhu, New quantum MDS code from constacyclic codes, Chin. Ann. Math. Ser. B 37 (2016), no. 6, 891-898. https://doi.org/10.1007/s11401-016-1043-8
  7. L. Jin, H. Kan, and J.Wen, Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes, Des. Codes Cryptogr. 84 (2017), no. 3, 463-471. https://doi.org/10.1007/s10623-016-0281-9
  8. L. Jin, S. Ling, J. Luo, and C. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory 56 (2010), no. 9, 4735-4740. https://doi.org/10.1109/TIT.2010.2054174
  9. L. Jin and C. Xing, A construction of new quantum MDS codes, IEEE Trans. Inform. Theory 60 (2014), no. 5, 2921-2925. https://doi.org/10.1109/TIT.2014.2299800
  10. X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inform. Theory 59 (2013), no. 2, 1193-1197. https://doi.org/10.1109/TIT.2012.2220519
  11. X. Kai, S. Zhu, and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory 60 (2014), no. 4, 2080-2086. https://doi.org/10.1109/TIT.2014.2308180
  12. A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52 (2006), no. 11, 4892-4914. https://doi.org/10.1109/TIT.2006.883612
  13. A. Krishna and D. V. Sarwate, Pseudocyclic maximum-distance-separable codes, IEEE Trans. Inform. Theory 36 (1990), no. 4, 880-884. https://doi.org/10.1109/18.53751
  14. G. G. La Guardia, New quantum MDS codes, IEEE Trans. Inform. Theory 57 (2011), no. 8, 5551-5554. https://doi.org/10.1109/TIT.2011.2159039
  15. G. G. La Guardia, Quantum codes derived from cyclic codes, Int. J. Theor. Phys. 56 (2017), no. 8, 2479-2484. https://doi.org/10.1007/s10773-017-3399-2
  16. G. G. La Guardia and M. M. S. Alves, On cyclotomic cosets and code constructions, Linear Algebra Appl. 488 (2016), 302-319. https://doi.org/10.1016/j.laa.2015.09.034
  17. S. Li, M. Xiong, and G. Ge, Pseudo-cyclic codes and the construction of quantum MDS codes, IEEE Trans. Inform. Theory 62 (2016), no. 4, 1703-1710. https://doi.org/10.1109/TIT.2016.2535180
  18. J. Qian and L. Zhang, Improved constructions for nonbinary quantum BCH codes, Internat. J. Theoret. Phys. 56 (2017), no. 4, 1355-1363. https://doi.org/10.1007/s10773-017-3277-y
  19. J. Qian and L. Zhang, Improved constructions for quantum maximum distance separable codes, Quantum Inf. Process. 16 (2017), no. 1, Art. 20.
  20. P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev. A 52 (1995), no. 4, 2493-2496. https://doi.org/10.1103/PhysRevA.52.R2493
  21. J. Yuan, S. Zhu, X. Kai, and P. LI, On the construction of quantum constacyclic codes, Des. Codes Cryptogr. 85 (2017), no. 1, 179-190. https://doi.org/10.1007/s10623-016-0296-2
  22. G. Zhang and B. Chen, New quantum MDS codes, Int. J. Quantum Inf. 12 (2014), no. 4, 1450019, 10 pp.