DOI QR코드

DOI QR Code

Medium-chain fatty acid enriched-diacylglycerol (MCE-DAG) accelerated cholesterol uptake and synthesis without impact on intracellular cholesterol level in HepG2

중쇄지방산 강화 디아실글리세롤(MCE-DAG)이 간세포 내 콜레스테롤 흡수 및 합성 기전에 미치는 영향

  • Received : 2019.05.14
  • Accepted : 2019.05.29
  • Published : 2019.06.30

Abstract

The effects of medium-chain enriched diacylglycerol (MCE-DAG) oil on hepatic cholesterol homeostasis were investigated. HepG2 hepatocytes were treated with either 0.5, 1.0, or $1.5{\mu}g/mL$ of MCE-DAG for 48 h. There was no evidence of cytotoxicity by MCE-DAG up to $1.5{\mu}g/mL$. The level of proteins for cholesterol uptake including CLATHRIN and LDL receptor increased by MCE-DAG in a dose-dependent manner (p<0.05). Furthermore, proprotein convertase subtilisin/kexin type 9, an inhibitor of LDLR, was dose-dependently diminished (p<0.05), indicating cholesterol clearance raised. MCE-DAG significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A reductase and acetyl-CoA acetyltransferase2 (p<0.05), required for cholesterol synthesis, and their transcriptional regulator sterol regulatory element-binding protein2 (p<0.05). These findings suggest that given conditions of prolonged sterol fasting in the current study activated both hepatic cholesterol synthesis and clearance by MCE-DAG. However, total intracellular level of cholesterol was not altered by MCE-DAG. Taken together, MCE-DAG has the potential to prevent hypercholesterolemia by increasing hepatic cholesterol uptake without affecting intracellular cholesterol level.

본 연구진은 선행연구에서 MCE-DAG를 섭취한 마우스에서 혈중 총 콜레스테롤과 LDL 콜레스테롤의 감소를 보고한 바 있어, 본 연구에서 in vitro를 통해 MCE-DAG와 간의 콜레스테롤 항상성 기전의 관련성을 구명하고자 하였다. LDLR과 같은 콜레스테롤 흡수 관련 인자의 발현이 MCE-DAG에 의해 증가한 반면, LDLR을 억제하는 PCSK9의 발현은 감소하였다. 또한, 콜레스테롤 합성 관련 인자인 HMGCR의 발현이 MCE-DAG에 의해 증가하였고, 전사조절인자인 SREBP2의 발현이 증가하였다. 이러한 결과들은 콜레스테롤의 합성과 흡수가 동시에 증가하였음을 뒷받침한다. 즉, 간 내 콜레스테롤 필요량이 증가함에 따라, 간의 콜레스테롤 합성 및 흡수를 활성화시켜 콜레스테롤 항상성을 유지하는 기전이 촉진되었음을 의미한다. 하지만 간 세포 내 총 콜레스테롤 양은 MCE-DAG에서 영향을 받지 않았다. 콜레스테롤 흡수 및 합성 기전이 촉진되었음에도 세포 내 콜레스테롤 농도가 증가하지 않은 현상은 담즙산 등 콜레스테롤 분비 촉진에 의한 것일 수 있다. 이러한 추론은 추후 콜레스테롤 분비 기전을 검증할 수 있는 실험을 설계하여 검증해볼 필요성이 있다. 결론적으로 MCE-DAG는 세포 내 콜레스테롤 흡수 작용을 촉진하는 효과가 있어 추후 기능성 유지로 활용 가능할 것으로 판단된다.

Keywords

SPGHB5_2019_v51n3_272_f0001.png 이미지

Fig. 1 Effects of MCE-DAG on hepatic cholesterol uptake in HepG2 cells. Data expressed as the mean±standard error.

SPGHB5_2019_v51n3_272_f0002.png 이미지

Fig. 2 Effects of MCE-DAG on hepatic cholesterol synthesis in hepatocytes.

SPGHB5_2019_v51n3_272_f0003.png 이미지

Fig. 3 Effects of MCE-DAG on the regulators for hepatic cholesterol homeostasis.

SPGHB5_2019_v51n3_272_f0004.png 이미지

Fig. 4 Intracellular total cholesterol contents on MCE-DAG.

References

  1. Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Tebon A, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279: 48865-48875 (2004) https://doi.org/10.1074/jbc.M409699200
  2. Brown AJ. Understanding the cellular cholesterol economy. Available from: http://www.athero.org/commentaries/comm1280.asp. Accessed May 11, 2019.
  3. Burg JS, Espenshade PJ. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid. Res. 50: 403-410 (2011) https://doi.org/10.1016/j.plipres.2011.07.002
  4. Cheng X, Li J, Guo D. SCAP/SREBPs are central play in lipid metabolism and novel metabolic targets in cancer theraphy. Curr. Top. Med. Chem. 18: 484-493 (2018) https://doi.org/10.2174/1568026618666180523104541
  5. DeBose-Boyd RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ. Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99: 703-712 (1999) https://doi.org/10.1016/S0092-8674(00)81668-2
  6. Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res. 34: 1637-1659 (1993) https://doi.org/10.1016/S0022-2275(20)35728-X
  7. Go GW. Low-density lipoprotein receptor-related protein 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 7: 4453-4464 (2015) https://doi.org/10.3390/nu7064453
  8. Goldstein L, Brown S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46: 897-930 (1977) https://doi.org/10.1146/annurev.bi.46.070177.004341
  9. Goldstein J, Hobbs H, Brown M. Familial Hypercholesterolemia. pp. 2863-2913. The online metabolic and molecular bases of inherited disease. Valle D, Beaudet A, Vogelstein B, Kinzler K, Antonarakis S, Ballabio A, Gibson K, Mitchell G (eds), McGraw-Hill, Inc., New York, NY, USA (2016)
  10. Han J, Hamilton JA, Kirkland JL, Corkey BE, Guo W. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obes. Res. 11: 734-744 (2003) https://doi.org/10.1038/oby.2003.103
  11. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109: 1125-1131 (2002) https://doi.org/10.1172/JCI0215593
  12. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. 100: 12027-12032 (2003) https://doi.org/10.1073/pnas.1534923100
  13. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J. Clin. Invest. 101: 2331-2339 (1998) https://doi.org/10.1172/JCI2961
  14. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92: 883-893 (1993) https://doi.org/10.1172/JCI116663
  15. Jones C, Garuti R, Michaely P, Li WP, Maeda N, Cohen JC, Herz J, Hobbs HH. Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J. Clin. Invest. 117: 165-174 (2007) https://doi.org/10.1172/JCI29415
  16. Kim H, Choe JH, Choi JH, Kim HJ, Park SH, Lee MW, Kim W, Go Gw. Medium-Chain Enriched Diacylglycerol (MCE-DAG) oil decreases body fat mass in mice by increasing lipolysis and thermogenesis in adipose tissue. Lipids 52: 665-673 (2017) https://doi.org/10.1007/s11745-017-4277-7
  17. Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels. Circulation 118: 2047-2056 (2008) https://doi.org/10.1161/CIRCULATIONAHA.108.804146
  18. Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) ${\gamma}$ activators and pan-PPAR partial agonists. PLoS One 7: e36297 (2012) https://doi.org/10.1371/journal.pone.0036297
  19. Lo SK, Tan CP, Long K, Yusoff MSA, Lai OM. Diacylglycerol oilproperties, processes and products: a review. Food Bioprocess Tech. 1: 223-233 (2008) https://doi.org/10.1007/s11947-007-0049-3
  20. Loewen CJ, Levine TP. Cholesterol homeostasis: not until the SCAP lady INSIGs. Curr. Biol. 12: R779-R781 (2002) https://doi.org/10.1016/S0960-9822(02)01292-7
  21. Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. 101: 7100-7105 (2004) https://doi.org/10.1073/pnas.0402133101
  22. Marten B, Pfeuffer M, Schrezenmeir J. Medium-chain triglycerides. Int. Dairy J. 16: 1374-1382 (2006) https://doi.org/10.1016/j.idairyj.2006.06.015
  23. Mishra SK, Keyel PA, Edeling MA, Dupin AL, Owen DJ, Traub LM. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein. J. Biol. Chem. 280: 19270-19280 (2005) https://doi.org/10.1074/jbc.M501029200
  24. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102: 315-323 (2000) https://doi.org/10.1016/S0092-8674(00)00037-4
  25. Norman D, Sun XM, Bourbon M, Knight BL, Naoumova RP, Soutar AK. Characterization of a novel cellular defect in patients with phenotypic homozygous familial hypercholesterolemia. J. Clin. Invest. 104: 619-628 (1999) https://doi.org/10.1172/JCI6677
  26. Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279: 50630-50638 (2004) https://doi.org/10.1074/jbc.M410077200
  27. Rong S, Cortes VA, Rashid S, Anderson NN, McDonald JG, Liang G, Moon YA, Hammer RE, Horton JD. Expression of SREBP-1c requires SREBP-2 mediated generation of a sterol ligand for LXR in livers of mice. Elife. pii: e25015. doi: 10.7554/eLife.25015 (2017)
  28. Sakai J, Nohturfft A, Cheng D, Ho Y, Brown MS, Goldstein JL. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J. Biol. Chem. 272: 20213-20221 (1997) https://doi.org/10.1074/jbc.272.32.20213
  29. Stancu C, Sima A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 5: 378-387 (2001) https://doi.org/10.1111/j.1582-4934.2001.tb00172.x
  30. Statistics Korea. Cause of death in 2017. Available from: https://www.gov.kr/portal/ntnadmNews/1605663. Accessed May 10, 2019 (2018)
  31. Sung MH, Liao FH, Chien YW. Medium-chain triglycerides lower blood lipids and body weight in streptozotocin-induced type 2 diabetes rats. Nutrients Doi: 10.3390/nu10080963 (2018)
  32. Tada N, Shoji K, Takeshita M, Watanabe H, Yoshida H, Hase T, Matsuo N, Tokimitsu I. Effects of diacylglycerol ingestion on postprandial hyperlipidemia in diabetes. Clin. Chim. Acta. 353: 87-94 (2005) https://doi.org/10.1016/j.cccn.2004.10.006
  33. Tada N, Watanabe H, Matsuo N, Tokimitsu I, Okazaki M. Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin. Chim. Acta. 311: 109-117 (2001) https://doi.org/10.1016/S0009-8981(01)00583-6
  34. Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13: 44-56 (2011) https://doi.org/10.1016/j.cmet.2010.12.004
  35. The Korean Society of Lipid and Atherosclerosis . Dyslipidemia fact sheets in Korea 2018. Available from; http://www.lipid.or.kr/bbs/index.html?code=fact_sheet&category=&gubun=&page=1&number=896&mode=view&keyfield=&key=. Accessed May 10, 2019.
  36. Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J. Nutr. 131: 2853-2859 (2001) https://doi.org/10.1093/jn/131.11.2853
  37. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110: 489-500 (2002) https://doi.org/10.1016/S0092-8674(02)00872-3
  38. Yasukawa T, Yasunaga K. Nutritional functions of dietary diacylglycerols. J. Oleo Sci. 50: 427-432 (2001) https://doi.org/10.5650/jos.50.427
  39. Ye ZJ, Go GW, Singh R, Liu W, Keramati AR, Mani A. LRP6 protein regulates low density lipoprotein (LDL) receptor-mediated LDL uptake. J. Biol. Chem. 287: 1335-1344 (2012) https://doi.org/10.1074/jbc.M111.295287