DOI QR코드

DOI QR Code

Immunomodulatory and anti-metastatic activities of polysaccharide isolated from red cabbage

적양배추에서 분리한 다당의 면역 및 항전이 활성

  • Lee, Sue Jung (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • 이수정 (경기대학교 식품생물공학과) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2019.04.17
  • Accepted : 2019.05.27
  • Published : 2019.06.30

Abstract

In this study, we examined the immunostimulating characteristics of a hot water extract (RCW) and crude polysaccharides (RCP) of red cabbage. RCW and RCP did not show any cytotoxicity in B16BL6 cells and macrophages. Although the sugar compositions of RCW and RCP were similar, the uronic acid content of RCP was higher than that of RCW RCP significantly increased the production of various cytokines and NO, whereas RCW did not affect the production of cytokines and NO. In an ex vivo assay of natural killer (NK) cell activity, intravenous (i.v.) administration of RCP significantly augmented NK cytotoxicity against Yac-1 tumor cells at 3 days after RCP treatment. In an experimental lung metastasis model using B16BL6 melanoma cells, i.v. administration of RCP at a dose of $1,000{\mu}g$ per mouse significantly inhibited 47.3% of lung metastasis. These results suggest that crude polysaccharide isolated from red cabbage is a promising food ingredient for the prevention of tumor metastasis.

적양배추 유래물의 면역 활성 및 항전이 활성을 평가하기 위하여 적양배추 유래 열수추출물 RCW 및 조다당 RCP를 분리하였다. RCW는 중성당이 60%의 높은 비율로 검출되었으며, 이중 Glc가 28.2%로 구성되어 있었으며, RCP는 중성당과 산성당이 각각 40.0% 및 58.9%로 이루어져 있으며, 구성당 분석 결과, Ara(27.5%)와 Gal (17.2%)가 높은 비율로 검출되었다. RCW와 RCP는 정상세포 및 암 세포에 대한 어떠한 독성도 나타나지 않았으며, 오히려 정상세포에서는 약간의 증식능이 확인되었다. 또한 대식세포 자극을 통한 cytokine 분비능을 측정한 결과, RCW는 IL-6, IL-12 및 $TNF-{\alpha}$ 생산능은 어떠한 농도에서도 확인되지 않았으며, $1000{\mu}g/mL$ 고농도에서 NO 생산능이 확인되었다. 반면에 RCP는 $8{\mu}g/mL$의 저농도에서도 IL-6, IL-12, $TNF-{\alpha}$ 및 NO의 생산능이 확인되었다. 높은 cytokine 생산능을 나타낸 RCP의 NK 세포 활성 및 항전이 활성을 측정한 결과, RCP를 $1000{\mu}g/mouse$농도로 정맥투여할 경우, NK 세포를 무처리군 대비 최대 12배 활성화 시키는 것으로 확인되었으며, 47.3%의 항전이 활성이 확인되었다. 적양배추 유래 면역 활성 다당의 구조를 추정하기 위하여 ${\beta}-Glucosyl$ Yariv reagent와의 반응성을 검토한 결과, RCP $1000{\mu}g/mL$에는 약 9.7%의 $arabino-{\beta}-3,6-galactan$이 검출되었다. 본 결과로부터 적양배추에는 $arabino-{\beta}-3,6-galactan$을 일부 함유하는 RG-I 형태의 다당으로 존재하며, 이들에 의해 강력한 면역 증진 활성이 나타나는 것이라 결론지을 수 있었다.

Keywords

SPGHB5_2019_v51n3_263_f0001.png 이미지

Fig. 1. Isolation of water extract and crude polysaccharides from red cabbage and their HPLC chromatograms.

SPGHB5_2019_v51n3_263_f0002.png 이미지

Fig. 2. Cytotoxic effect of RCW and RCP isolated from the red cabbage on macrophage cells (A) and B16BL6 melanoma cell lines (B) in vitro.

SPGHB5_2019_v51n3_263_f0003.png 이미지

Fig. 3. Effect of RCW and RCP on the secretion of cytokines (IL-6, IL-12 and TNF-α) and nitric oxide (NO) in murine peritoneal macrophages.

SPGHB5_2019_v51n3_263_f0004.png 이미지

Fig. 4. Effect of RCP on cytolytic activity of natural killer (NK) cells ex vivo.

SPGHB5_2019_v51n3_263_f0005.png 이미지

Fig. 5. Inhibitory effect of RCP from red cabbage on lung metastasis produced by i.v. inoculation of B16BL6 melanoma cells.

SPGHB5_2019_v51n3_263_f0006.png 이미지

Fig. 6. Single radial gel diffusion (A) and reactivity (B) between β-glucosyl Yariv reagent and polysaccharide fractions isolated from red cabbage.

Table 1. Analytical conditions of samples by HPLC and GC

SPGHB5_2019_v51n3_263_t0001.png 이미지

Table 2. Chemical properties of RCW and RCP isolated from red cabbage

SPGHB5_2019_v51n3_263_t0002.png 이미지

References

  1. Aspinall GO. Carbohydrate polymers of plant cell wall. pp. 95-115. In: Biogenesis of Plant Cell Wall Polysaccharides. Loewus F (ed). Academic Press, New York, NY, USA (1973)
  2. Beutler B. Innate immunity: An overview. Mol. Immunol. 40: 845-859 (2004) https://doi.org/10.1016/j.molimm.2003.10.005
  3. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Gately M K. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178: 1223-1230 (1993) https://doi.org/10.1084/jem.178.4.1223
  6. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1-30 (1993) https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
  7. Carpita N, McCann M. The cell wall. pp. 52-108. In: Biochemistry and Molecular Biology of Plants. Buchanan BB (ed). American Society of Plant Physiologists, Maryland, Md, USA (2000)
  8. Chen X, Hu ZP, Yang XX, Huang M, Gao Y, Tang W, Chan SY, Dai X, Ye J, Ho PCL, Duan W, Yang HY, Zhu YZ, Zhou SF. Monitoring of immune responses to a herbal immuno-modulator in patients with advanced colorectal cancer. Int. Immunopharmacol. 6: 499-508 (2006) https://doi.org/10.1016/j.intimp.2005.08.026
  9. Clarke AE, Anderson RL, Stone BA. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18: 521-540 (1979) https://doi.org/10.1016/S0031-9422(00)84255-7
  10. Diwanay S, Chitre D, Patwardhan B. Immunoprotection by botanical drugs in cancer chemotherapy. J. Ethnopharmacol. 90: 49-55 (2004) https://doi.org/10.1016/j.jep.2003.09.023
  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  12. Engelsen SB, Cros S, Mackie W, Perez S. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433 (1996) https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.0.CO;2-8
  13. Fan Y, Wang W, Song W, Chen H, Teng A, Liu A. Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis. Carbohydr. Polym. 88: 1313-1318 (2012) https://doi.org/10.1016/j.carbpol.2012.02.014
  14. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R. Regulation of human cytolytic lymphocyte responses by interleukin-12. Cellular Immunology 143: 127-142 (1992) https://doi.org/10.1016/0008-8749(92)90011-D
  15. Gruchalla RS, Jones J. Combating high-priority biological agents: what to do with drug-allergic patients and those for whom vaccination is contraindicated?. J. Allergy Clin. Immunol. 112: 675-682 (2003) https://doi.org/10.1016/j.jaci.2003.08.001
  16. Hackett CJ. Innate immune activation as a broad-spectrum biodefense strategy: Prospects and research challenges. J. Allergy Clin. Immunol. 112: 686-694 (2003) https://doi.org/10.1016/S0091-6749(03)02025-6
  17. Hwang YC, Shin KS. Characterization of immuno-stimulating polysaccharides isolated from Korean persimmon vinegar. Korean J. Food Sci. Technol. 4: 220-227 (2008)
  18. Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 49: 926-936 (1972) https://doi.org/10.1104/pp.49.6.926
  19. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal. Biochem. 85: 595-601 (1978) https://doi.org/10.1016/0003-2697(78)90260-9
  20. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 11: 373 (2010) https://doi.org/10.1038/ni.1863
  21. Kim HS. Natural Killer Cell and Cancer Immunotherapy. Hanyang Med. Rev. 33: 59-64 (2013) https://doi.org/10.7599/hmr.2013.33.1.59
  22. Kim HW, Shin MS, Lee SJ, Park HR, Jee HS, Yoon TJ, Shin KS. Signaling pathways associated with macrophage-activating polysaccharides purified from fermented barley. Int. J. Biol. Macromol. 131: 1084-1091 (2019) https://doi.org/10.1016/j.ijbiomac.2019.03.159
  23. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immun. Immunotherapy 54: 721-728 (2005) https://doi.org/10.1007/s00262-004-0653-2
  24. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sharman F, Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170: 827-845 (1989) https://doi.org/10.1084/jem.170.3.827
  25. Lee EH, Park HR, Shin MS, Cho SY, Choi HJ, Shin KS. Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr. Polym. 111: 72-79 (2014) https://doi.org/10.1016/j.carbpol.2014.04.073
  26. Li Q, Zhang F, Chen G, Chen Y, Zhang W, Mao G, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa. Int. J. Biol. Macromol. 111: 1293-1303 (2018) https://doi.org/10.1016/j.ijbiomac.2018.01.090
  27. Lolis E, Bucala R. Therapeutic approaches to innate immunity: Severe sepsis and septic shock. Nat. Rev. Drug Discov. 2: 635-645 (2003) https://doi.org/10.1038/nrd1153
  28. Manetti R, Parronchi P, Giudizi MG, Piccinni MP, Maggi E, Trinchieri G, Romagnani S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177: 1199-1204 (1993) https://doi.org/10.1084/jem.177.4.1199
  29. Moretta L, Moretta A. Unravelling natural killer cell function: Triggering and inhibitory human NK receptors. EMBO J. 23: 255-259 (2004) https://doi.org/10.1038/sj.emboj.7600019
  30. O'Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell walls. pp. 415-441. In: Methods in Plant Biochemistry. Bryant JA. Carbohydrates, Academic, London, England (1990)
  31. Park SO, Kim JM. Functional food for immune regulation-beta-glucan. Food Science and Industry 45: 39-47 (2012)
  32. Pennini ME, Perkins DJ, Salazar AM, Lipsky M, Vogel SN. Complete dependence on IRAK4 kinase activity in TLR2, but not TLR4, signaling pathways underlies decreased cytokine production and increased susceptibility to Streptococcus pneumoniae infection in IRAK4 kinase-inactive mice. J. Immunol. 190: 307-316 (2013) https://doi.org/10.4049/jimmunol.1201644
  33. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol. 5: 996-1002. (2004) https://doi.org/10.1038/ni1114
  34. Schepetkin IA, Faulkner CL, Nelson-Overton LK, Wiley JA, Quinn MT. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. Int. Immunopharmacol. 5: 1783-1799 (2005) https://doi.org/10.1016/j.intimp.2005.05.009
  35. Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333 (2006) https://doi.org/10.1016/j.intimp.2005.10.005
  36. Smyth MJ, Taniguchi M, Street SE. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165: 2665-2670 (2000) https://doi.org/10.4049/jimmunol.165.5.2665
  37. Statistics Korea. Annual report on the causes of death statistics. 11-1240000-000028-10. 1-75 (2017)
  38. Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 36: 47-50 (1999) https://doi.org/10.1039/a809656b
  39. Trinchieri G. Interleukin-12 and its role in the generation of Th1 cells. Immunol. Today 14: 335-338 (1993) https://doi.org/10.1016/0167-5699(93)90230-I
  40. Trinchieri G. Interleukin-12: A cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84: 4008-4027 (1994) https://doi.org/10.1182/blood.V84.12.4008.bloodjournal84124008
  41. van Holst GJ, Clarke AE. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal. Biochem. 148: 446-450 (1985) https://doi.org/10.1016/0003-2697(85)90251-9
  42. Vivier E, Biron CA. A pathogen receptor on natural killer cells. Science 296: 1248-1249 (2002) https://doi.org/10.1126/science.1072447
  43. Walzer T, Dalod M, Vivier E, Zitvogel L. Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin. Biol. Ther. 5: 49-59 (2005) https://doi.org/10.1517/14712598.5.1.S49
  44. Wiczkowski W, Szawara-Nowak D, Topolska J. Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Res. Int. 51: 303-309 (2013) https://doi.org/10.1016/j.foodres.2012.12.015
  45. Wigginton JM, Kuhns DB, Back TC, Brunda MJ, Wiltrout RH, Cox GW. Interleukin 12 primes macrophages for nitric oxide production in vivo and restores depressed nitric oxide production by macrophages from tumor-bearing mice: implications for the antitumor activity of interleukin 12 and/or interleukin 2. Cancer Res. 56: 1131-1136 (1996)
  46. Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 54: 1976-1981 (1994)