DOI QR코드

DOI QR Code

Reduction of Discontinuity by Using Converging Pick-Up in Remapped Three-Dimensional Integral Imaging

집적영상에서 기본영상 재배열시 수렴광축을 이용한 불연속성 개선

  • Yu, Hyun-Woo (Department of Physics, Kangwon National University) ;
  • Seo, Kwang-Beom (Department of Physics, Kangwon National University) ;
  • Lee, Ho-Chul (Department of Physics, Kangwon National University) ;
  • Cha, Sungdo (Department of Physics, Kangwon National University) ;
  • Shin, Seung-Ho (Department of Physics, Kangwon National University)
  • 유현우 (강원대학교 물리학과, 레이저&비선형 광학 연구실) ;
  • 서광범 (강원대학교 물리학과, 레이저&비선형 광학 연구실) ;
  • 이호철 (강원대학교 물리학과, 레이저&비선형 광학 연구실) ;
  • 차성도 (강원대학교 물리학과, 레이저&비선형 광학 연구실) ;
  • 신승호 (강원대학교 물리학과, 레이저&비선형 광학 연구실)
  • Received : 2019.02.18
  • Accepted : 2019.04.29
  • Published : 2019.06.25

Abstract

When elemental images are remapped to solve the depth conversion in integral imaging, the integrated image is inevitably accompanied by discontinuity. This paper analyzes the discontinuity factor caused by elemental-image remapping, to validate the reduction of the discontinuity through converging pick-up and reconstruction of the three-dimensional image in real and virtual modes simultaneously. The validity of the proposed method is quantitatively verified when compared with the conventional parallel pick-up.

집적영상에서 깊이역전 문제를 해결하기 위해 기본영상 재배열이 제안되었지만 시점영상이 연속적으로 재생되지 못하는 불연속성 문제를 포함하고 있다. 본 논문에서는 불연속성 요인을 분석하였다. 수렴광축으로 기본영상을 획득하고, 재배열한 후 실상 및 허상모드를 동시에 재생하는 불연속성 개선 방법을 제안하고, 평행광축을 이용하여 획득하고 실상모드로 재생하는 일반적인 방법과 비교하여 유효성을 정량적으로 검증하였다.

Keywords

KGHHBU_2019_v30n3_106_f0001.png 이미지

Fig. 1. Elemental image remapping for depth conversion.

KGHHBU_2019_v30n3_106_f0002.png 이미지

Fig. 2. Perspectives generated by remapping of elemental images.

KGHHBU_2019_v30n3_106_f0003.png 이미지

Fig. 3. Relations between the reconstruction mode and parallax according to the pick-up method.

KGHHBU_2019_v30n3_106_f0004.png 이미지

Fig. 4. Viewing angle of a single lens in a lens array with remapped elemental images.

KGHHBU_2019_v30n3_106_f0005.png 이미지

Fig. 5. Lateral quantization with respect to the depth distance.

KGHHBU_2019_v30n3_106_f0006.png 이미지

Fig. 6. Pick-up process with 5 × 5 camera array by using (a) converging and (b) parallel optical axes.

KGHHBU_2019_v30n3_106_f0007.png 이미지

Fig. 7. 5 × 5 elemental images obtained by using (a) converging and (b) parallel pick-up.

KGHHBU_2019_v30n3_106_f0008.png 이미지

Fig. 8. 50 × 50 remapped elemental images from (a) converging and (b) parallel pick-up.

KGHHBU_2019_v30n3_106_f0009.png 이미지

Fig. 9. Experimental setup.

KGHHBU_2019_v30n3_106_f0010.png 이미지

Fig. 10. Depth range extension with remapped elemental images of a converging optical axis.

KGHHBU_2019_v30n3_106_f0011.png 이미지

Fig. 11. Depth plane comparison by measuring quantization of a reconstructed image with (a) converging and (b) parallel optical axes.

KGHHBU_2019_v30n3_106_f0012.png 이미지

Fig. 12. Reconstructed images by integrating at five different perspectives with (a) converging and (b) parallel optical axes.

References

  1. B.-S. Kim, K.-W. Kim, K.-H. Lee, and W.-S. Park, "Optical analysis for the 3D display with a lenticular array," J. Korean Inst. Electr. Electron. Mater. Eng. 26, 534-538 (2013). https://doi.org/10.4313/JKEM.2013.26.7.534
  2. M. Park and H.-J. Choi, "A three-dimensional transparent display with enhanced transmittance and resolution using an active parallax barrier with see-through areas on an LCD panel," Curr. Opt. Photon. 1, 95-100 (2017). https://doi.org/10.3807/COPP.2017.1.2.095
  3. M. Martinez-Corral and B. Javidi, "Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems," Adv. Opt. Photon. 10, 512-566 (2018). https://doi.org/10.1364/AOP.10.000512
  4. G. Lippmann, "Integral photography," C. R. Acad. Sci. 146, 446-451 (1908).
  5. J.-I. Ser and S.-H. Shin, "Depth-Conversion in integral imaging three-dimensional display by means of elemental image recombination," Korean J. Opt. Photon. 18, 24-30 (2007). https://doi.org/10.3807/HKH.2007.18.1.024
  6. S.-W. Min, J. Kim, and B. Lee, "New characteristic equation of three-dimensional integral imaging system and its applications," Jpn. J. Appl. Phys. 44, L71-L74 (2005). https://doi.org/10.1143/JJAP.44.L71
  7. J. Yim, Y.-M. Kim, and S.-W. Min, "Real object pickup method for real and virtual modes of integral imaging," Opt. Eng. 53, 073109 (2014). https://doi.org/10.1117/1.OE.53.7.073109
  8. J. Jung, K. Hong, G. Park, I. Chung, J. Park, and B. Lee, "Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging," Opt. Express 18, 26373-26387 (2010). https://doi.org/10.1364/OE.18.026373
  9. Y. Takaki, K. Tanaka, and J. Nakamura, "Super multi-view with lower resolution flat-panel display," Opt. Express 19, 4129-4139 (2011). https://doi.org/10.1364/OE.19.004129
  10. M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, "Free-viewpoint TV," IEEE Signal Process. Mag. 28, 67-76 (2011). https://doi.org/10.1109/MSP.2010.939077
  11. M.-K. Kang, H.-P. Nguyen, D. Kang, S.-G. Park, and S.-K. Kim, "Adaptive viewing distance in super multi-view displays using aperiodic 3-D pixel location and dynamic view indices," Opt. Express 26, 20661-20679 (2018). https://doi.org/10.1364/OE.26.020661
  12. Y. Takaki, Y. Urano, and H. Nishio, "Motion-parallax smoothness of short-, medieum-, and long-distance 3D image presentation using multi-view display," Opt. Express 20, 27180-27197 (2012). https://doi.org/10.1364/OE.20.027180
  13. K.-H. Yoon, M.-K. Kang, H. Lee, and S.-K. Kim, "Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation [Invited]," Appl. Opt. 57, A101-A117 (2018). https://doi.org/10.1364/AO.57.00A101
  14. D. Shin, B. Lee, and E. Kim, "Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens," Appl. Opt. 45, 7375-7381 (2006). https://doi.org/10.1364/AO.45.007375
  15. J. Jang, D. Shin, and E. Kim, "Improved 3-D image reconstruction using the convolution property of periodic functions in curved integral-imaging," Opt. Lasers Eng. 54, 14-20 (2014). https://doi.org/10.1016/j.optlaseng.2013.09.011