DOI QR코드

DOI QR Code

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS)

폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조

  • Lee, Kyung-Han (Graduate School, Department Green Energy, Hoseo University) ;
  • Han, Joo-Young (Graduate School, Department Green Energy, Hoseo University) ;
  • Ryu, Cheol-Hwi (Graduate School, Department Green Energy, Hoseo University) ;
  • Hwang, Gab-Jin (Graduate School, Department Green Energy, Hoseo University)
  • 이경한 (호서대학교 일반대학원 그린에너지공학과) ;
  • 한주영 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2019.05.16
  • Accepted : 2019.06.25
  • Published : 2019.06.30

Abstract

The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.

폴리에테르설폰(PES)과 폴리페닐렌설파이드설폰(PPSS)을 블렌딩한 고분자를 이용하여 음이온교환막을 제작하였다. EDXS와 FT-IR 분석으로부터 제작한 음이온교환막이 음이온교환기인 -N-을 갖는다는 것을 확인하였다. 1 mol/L의 황산용액에서 이온전도도를 측정하였다. 제작한 음이온교환막은 0.015~0.083 S/cm의 이온전도도를 가졌으며, 시판의 음이온교환막인 AFN과 APS의 값과 비교하여 동등 이상의 값을 가졌다. 제작한 음이온교환막의 바나듐 레독스 흐름 전지용 격막으로 사용한지를 평가하기 위해 각 바나듐 이온의 투과를 측정하였다. 제작한 음이온교환막의 각 바나듐 이온의 투과도는 시판의 양이온교환막인 Nafion 117과 시판의 음이온교환막인 AFN과 비교하여 낮은 값을 가졌다.

Keywords

References

  1. G.-J. Hwang and H. Ohya, "Preparation of anion exchange membrane based on block copolymers. Part I: Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195 (1998). https://doi.org/10.1016/S0376-7388(97)00283-4
  2. M. Khan, C. Zheng, A. N. Mondal, Md. Masem Hossain, B. Wu, K. Emmanuel, L. Wu, and T. Xu, "Preparation of anion exchange membrane from BPPO and dimethylethanolamine for electrodialysis", Desalination, 402, 10 (2017). https://doi.org/10.1016/j.desal.2016.09.019
  3. Y. Liu, S. Yang, Y. Chen, J. Liao, A. Sotto, and J. Shen, "Preparation of water-based anion exchange membrane from PVA for antifouling in the electrodialysis process", J. Membr. Sci., 570, 130 (2019). https://doi.org/10.1016/j.memsci.2018.10.011
  4. S. Doi, M. Yasukawa, Y. Kakihana, and M. Higa, "Alkali stack on anion exchange membranes with PVC backing and binder: Effect on performance and correlation between them", J. Membr. Sci., 573, 85 (2019). https://doi.org/10.1016/j.memsci.2018.11.065
  5. X. Zheng, S. Song, J. Yang, J. Wang, and L. Wang, "4-formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell", Euro. Poly. J., 112, 581 (2019). https://doi.org/10.1016/j.eurpolymj.2018.10.020
  6. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, and X. Ruan, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., 581, 82 (2019). https://doi.org/10.1016/j.memsci.2019.03.046
  7. Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, and T. Xu, "Guiding the self-assembly of hyper-branched anion exchange membranes utilized in alkaline fuel cells", J. Membr. Sci., 573, 595 (2019). https://doi.org/10.1016/j.memsci.2018.12.049
  8. M. Irfan, E. Bakangura, N. U. Afsar, Md. Masem Hossain, J. Ran, and T. Xu, "Preparation and performance evaluation of novel alkaline stable anion exchange membranes", J. Power. Soc., 355, 171 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.146
  9. B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. W. Lindstrom, G. Lindbergh, and C. Lagergren, "Quantifying water transfer in anion exchange membrane fuel cells", Int. J. Hydrogen Energy, 44, 4930 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.185
  10. J. Hou, X. Wang, Y. Liu, Q. Ge, Z. Yang, L. Wu, and T. Xu, "Witting reaction constructed an alkaline stable anion exchange membrane", J. Membr. Sci., 518, 282 (2016). https://doi.org/10.1016/j.memsci.2016.07.020
  11. C.-H. Woo, "Current patents and papers research trend of fuel cell membrane", Membr. J., 26(6), 407 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.407
  12. J.-P. Hwang, C.-H. Lee, and Y.-T. Jeong, "Research trends and prospects of reverse electrodialysis membranes", Membr. J., 27(2), 109 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.109
  13. G. Shukla and V. K. Shahi, "Amine functionalized graphene oxide C16 chain grafted with poly(ether sulfone) by DABCO coupling: Anaion exchange membrane for vanadium redox flow battery", J. Membr. Sci., 575, 109 (2019). https://doi.org/10.1016/j.memsci.2019.01.008
  14. L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Applied Energy, 233, 622 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
  15. J.-M. Lee, M.-S. Lee, K.-S. Nam, J.-D. Jeon, Y.-G. Yoon, and Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27(5), 415 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415
  16. D.-J. Kim and S.-Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22(5), 285 (2012).
  17. J. Hou, Y. Liu, Y. Liu, L. Wu, Z. Yang, and T. Xu, "Self-healing anion exchange membrane for pH 7 redox flow batteries", Chem. Eng. Sci., 201, 167 (2019). https://doi.org/10.1016/j.ces.2019.02.033
  18. G.-J. Hwang, S.-W. Kim, D.-M. In, D.-Y. Lee, and C.-H. Ryu, "Application of the commercial ion exchange membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 60, 360 (2018). https://doi.org/10.1016/j.jiec.2017.11.023
  19. H.-S. Choi, Y.-H. Oh, C.-H. Ryu, and G.-J. Hwang, "Characteristics of the all-vanadium redox flow battery using anion exchange membrane", J. Taiwan Inst. Chem. Eng., 45, 2920 (2014). https://doi.org/10.1016/j.jtice.2014.08.032
  20. G.-J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, and H.-S. Choi, "Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis", Korean J. Chem. Eng., 32(9), 1896 (2015). https://doi.org/10.1007/s11814-015-0005-2
  21. H. Ito, N. Kawaguchi, S. Someya, T. Munakata, N. Miyazaki, M. Ishida, and A. Nakano, "Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis", Int. J. Hydrogen Energy, 43, 17030 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.143
  22. L. Wang and M. A. Hickner, "Highly ordered ion-conducting block copolymers by hydrophobic block modification", J. Mater. Chem. A, 4, 31 (2016).
  23. X. Dong, S. Hou, H. Mao, J. Zheng, and S. Zhang, "Novel hydrophilic-hydrophobic block copolymer based on cardo poly(arylene ether sulfone)s with bis-quaternary ammonium moieties for anion exchange membranes", J. Membr. Sci., 518, 31 (2016). https://doi.org/10.1016/j.memsci.2016.06.036
  24. G.-J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Memb. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  25. G.-J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Memb. Sci., 132(1), 55 (1997). https://doi.org/10.1016/S0376-7388(97)00040-9
  26. J.-G. Kim, S.-H. Lee, S.-I Choi, C.-S. Jin, J.-C. Kim, C.-H Ryu, and G.-J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 16, 756 (2010). https://doi.org/10.1016/j.jiec.2010.07.007