DOI QR코드

DOI QR Code

A Novel Cost Estimation Method for UAM eVTOLs

전기 추진 수직이착륙 도심 항공 모빌리티 항공기의 비용 예측 연구

  • Kim, Hyunsoo (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.11.24
  • Accepted : 2021.02.16
  • Published : 2021.03.01

Abstract

As increasing the feasibility of the eVTOL UAM(electric vertical take-off and landing urban air mobility), numerous corporations and laboratories are conducting researches. In the aircraft development process, estimating the cost of the aircraft is essential part in terms of budgeting and commercial viability analysis. However, it is difficult to predict the cost of an eVTOL UAM owing to various configurations and little open cost information. This paper presents a novel method to predict the vehicle cost of various eVTOL configurations by modifying previous studies of the aircraft cost estimation. A vehicle cost of Wisk Cora is calculated by the presented method as an example to illuminate the method. The method is indirectly validated by comparing the vehicle costs of six representative eVTOL aircraft with those from the UAM study reports.

전기 동력 수직 이착륙 도심 항공 모빌리티 (eVTOL UAM)의 실현 가능성이 커짐에 따라 다수의 기업과 연구소에서 많은 연구가 진행되고 있다. 항공기 개발 과정에서 비용 예측은 예산 및 상업성 분석 측면에서 필수적인 요소이다. 그러나 형상의 다양성과, 비용 정보의 비공개 등의 이유로 eVTOL UAM의 비용 예측에 어려움이 있다. 따라서 본 연구에서는 기존 항공기 비용 예측 방법을 수정 및 보완하여 다양한 형상을 고려할 수 있는 eVTOL UAM의 항공기 비용 예측 방법을 제시한다. 방법의 이해를 돕기 위해 Wisk Cora의 항공기 비용을 예시로 계산하였다. UAM 분석 보고서와 6종의 대표 eVTOL UAM 가격의 상대적인 비교를 통해 제시된 방법의 타당성을 간접적으로 검증하였다.

Keywords

References

  1. Uber elevate, Fast-Forwarding to a future of on-demand urban air transportation, 2016.
  2. Booz Allen Hamilton, UAM market study - technical out brief, 2018.
  3. NASA, CCI and McKinsy, Urban air mobility market study, 2018.
  4. Raymer, D., Aircraft Design : A Conceptual Approach, American Institute of Aeronautics and Astronautics, Inc., 2012.
  5. Bil, C., Finger, D. F., Goetten, F. and Braun, C., "Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft," Asia Pacific International Symposium on Aerospace Technology, 2019.
  6. Zijp, S., "Development of a Life Cycle Cost Model for Conventional and Unconventional Aircraft," Master's thesis, Technical University of Delft, 2014.
  7. Jung, S. N., Yu, Y. H., Lee, C. Y. and Ko, K. H., "Preliminary design and cost estimation of helicopters," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 4, April 2010, pp. 309-314. https://doi.org/10.5139/JKSAS.2010.38.4.309
  8. Vertical Flight Society, The Electric VTOL Revolution, 2018.
  9. Porsche Consulting, The Future of Vertical Mobility, 2018.
  10. Gudmundsson, S., General Aviation Aircraft Design : Applied Methods and Procedures, Oxford : Butterworth-Heinemann, 2014.
  11. Mikulik, Z. and Haase, P., Composite Damage Metrics and Inspection, EASA, March 2012.
  12. Vegh, J. M., Botero, E., Clarke, M., Trent, J. and Alonso, J., "Current Capabilities and Challenges of NDARC and SUAVE for eVTOL Aircraft Design and Analysis," AIAA Propulsion and Energy 2019 Forum, AIAA Paper 2019-4505, 2019, pp. 1-15.
  13. Beltramo, M., Trapp, D., Kimoto, B. and Marsh, D., Parametric Study of Transport Aircraft System Cost and Weight, Technical Report NASACR-151970, NASA-Ames Research Center, 1977.
  14. U.S. Bureau of labor statistics, https://www.bls.gov/, Accessed July 2020.
  15. Kundu, A. K., Price, M. A. and Riordan, D., Conceptual Aircraft Design : An Industrial Perspective, Wiley, Hoboken, NJ, 2019.
  16. Misra, A., Summary of 2017 NASA workshop on assessment of advanced battery technologies for aerospace applications, NASA, January 2018.
  17. Bloomberg NFC, https://about.bnef.com/blog/battery-pack-prices-fall-as-market-ramps-up-with-market-average-at-156-kwh-in-2019/, Accessed November 2020.
  18. Bacchini, A. and Cestino, E., Electric VTOL Configurations Comparison, Aerospace, 2019.