DOI QR코드

DOI QR Code

Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete

  • Received : 2019.11.04
  • Accepted : 2021.02.04
  • Published : 2021.03.25

Abstract

In recent years, geopolymer cements, have gained significant attention as an environmental-friendly type of cement. In this experimental research, effects of different alkaline activator solutions and variations of associated parameters, including time of addition, concentration, and weight ratio, on the mechanical strengths of Granulated Ground Blast Furnace Slag (GGBFS)-based Geopolymer Concrete (GPC) were investigated. Investigation of the effects of simultaneous usage of KOH and NaOH solutions on the tensile and flexural strengths of GGBFS-based GPC, and the influence of NaOH solution addition time delay on the mechanical strengths is among the novel aspects investigated in this research. four series of mix designs and corresponding specimen testing is conducted to study different parameters of the active alkali solutions on GPC mechanical strengths. The results showed that addition of NaOH to the mix after 3 min of mixing KOH and Na2SiO3 with dry components (1/3 of the total mixing duration) resulted in the highest compressive, tensile and flexural strengths amongst other cases. Moreover, increasing the KOH concentration up to 12 M resulted in the highest compressive strength, while weight ratio of 1.5 for Na2SiO3/KOH was the optimum value to achieve highest compressive strengths.

Keywords

References

  1. Amnadnua, K., Tangchirapat, W. and Jaturapitakkul, C. (2013), "Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash", Mater. Des., 51, 894-901. https://doi.org/10.1016/j.matdes.2013.04.099.
  2. Andrejkovicova, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E.F., Velosa, A. and Rocha, F. (2016), "The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers", Appl. Clay Sci., 126, 141-152. https://doi.org/10.1016/j.clay.2016.03.009.
  3. Assi, L.N., Deaver, E.E. and Ziehl, P. (2018), "Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete", Constr. Build. Mater., 167, 372-380. https://doi.org/10.1016/j.conbuildmat.2018.01.193.
  4. Bagheri, A. and Nazari, A. (2014), "Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method", Mater. Des., 54, 483-490. https://doi.org/10.1016/j.matdes.2013.07.035.
  5. Bashir, I., Kapoor, K. and Sood, H. (2017), "An experimental investigation on the mechanical properties of geopolymer concrete", Int. J. Lat. Res. Sci. Technol., 6(3), 33-36.
  6. Bharat, B.J. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., 6(4), 387-405. https://doi.org/10.12989/acc.2018.6.4.387.
  7. Davidovits, J. (1999), "Chemistry of geopolymeric systems, terminology", Proceedings of 99 International Conference, Paris, France.
  8. Davidovits, J. (2013), "Geopolymer cement. A review", Geopolym. Inst., Technical Papers, 21, 1-11.
  9. De Vargas, A.S., Dal Molin, D.C., Vilela, A.C., Da Silva, F.J., Pavao, B. and Veit, H. (2011), "The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers", Cement Concrete Compos., 33(6), 653-660. https://doi.org/10.1016/j.cemconcomp.2011.03.006.
  10. Duxson, P., Provis, J.L., Lukey, G.C. and van Deventer, J.S.J. (2007), "The role of inorganic polymer technology in the development of 'green concrete'", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
  11. Ekinci, E., Turkmen, I., Kantarci, F. and Karakoc, M.B. (2019), "The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios", Constr. Build. Mater., 201, 257-267. https://doi.org/10.1016/j.conbuildmat.2018.12.204.
  12. Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fiber reinforced geopolymer concrete", Adv. Concrete Constr., 1(4), 305-318. http://dx.doi.org/10.12989/acc2013.1.4.305.
  13. Gorhan, G. and Kurklu, G. (2014), "The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures", Compos. Part B: Eng., 58, 371-377. https://doi.org/10.1016/j.compositesb.2013.10.082.
  14. Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., 101(6), 467-472.
  15. Komnitsas, K., Zaharaki, D. and Perdikatsis, V. (2009), "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers", J. Hazardous Mater., 161(2), 760-768. https://doi.org/10.1016/j.jhazmat.2008.04.055.
  16. Kusumastuti, E., Fansuri, H. and Atmaja, L. (2009), "Coal fly ash geopolymer: study of SiO2/Al2O3 mol ratios and the resulted geopolymer properties", Master Program Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.
  17. Mccaffrey, R. (2002), "Climate change and the cement industry", Global Cement and Lime Magazine (Environmental Special Issue), 15-19.
  18. Memon, F.A., Nuruddin, M.F. and Shafiq, N. (2013), "Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete", Int. J. Min. Metal. Mater., 20(2), 205-213. https://doi.org/10.1007/s12613-013-0714-7.
  19. Mishra, A., Choudhary, D., Jain, N., Kumar, M., Sharda, N. and Dutt, D. (2008), "Effect of concentration of alkaline liquid and curing time on strength and water absorption of geopolymer concrete", ARPN J. Eng. Appl. Sci., 3(1), 14-18.
  20. Morsy, M., Alsayed, S., Al-Salloum, Y. and Almusallam, T. (2014), "Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder", Arab. J. Sci. Eng., 39(6), 4333-4339. https://doi.org/10.1007/s13369-014-1093-8.
  21. Neupane, K., Chalmers, D. and Kidd, P. (2018), "High-strength geopolymer concrete-properties, advantages and challenges", Adv. Mater., 7(2), 15-25. https://doi.org/10.11648/j.am.20180702.11.
  22. Palacios, M. and Puertas, F. (2011), "Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars", ACI Mater. J., 108(1), 3-78.
  23. Palomo, A., Blanco-Varela, M.T., Granizo, M., Puertas, F., Vazquez, T. and Grutzeck, M. (1999a), "Chemical stability of cementitious materials based on metakaolin", Cement Concrete Res., 29(7), 997-1004. https://doi.org/10.1016/S0008-8846(99)00074-5.
  24. Palomo, A., Grutzeck, M.W. and Blanco, M.T. (1999b), "Alkali-activated fly ashesA cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
  25. Panagiotopoulou, C., Kakali, G., Tsivilis, S., Perraki, T. and Perraki, M. (2010), "Synthesis and characterisation of slag based geopolymers", Mater. Sci. forum, 636-637, 155-160. https://doi.org/10.4028/www.scientific.net/MSF.636-637.155.
  26. Parveen. and Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377.
  27. Patel, Y.J. and Shah, N. (2018), "Development of self-compacting geopolymer concrete as a sustainable construction material", Sustain. Envir. Res., 28(6), 412-421. https://doi.org/10.1016/j.serj.2018.08.004.
  28. Petrus, H.T.B.M., Hulu, J., Dalton, G.S., Malinda, E. and Prakosa, R.A. (2016), "Effect of bentonite addition on geopolymer concrete from geothermal silica", Mater. Sci. Forum, 841, 7-15. https://doi.org/10.4028/www.scientific.net/MSF.841.7.
  29. Phummiphan, I., Horpibulsuk, S., Rachan, R., Arulrajah, A., Shen, S.L. and Chindaprasirt, P. (2018), "High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material", J. Hazardous Mater., 341, 257-267. https://doi.org/10.1016/j.jhazmat.2017.07.067.
  30. Raijiwala, D.B., Patil, H.S. and Kundan, I.U. (2012), "Effect of alkaline activator on the strength and durability of geopolymer concrete", J. Eng. Res. Stud., 3(1), 18-21.
  31. Saha, S. and Rajasekaran, C. (2016), "Mechanical properties of recycled aggregate concrete produced with Portland pozzolana cement", Adv. Concrete Constr., 4(1), 27-35. http://dx.doi.org/10.12989/acc.2016.4.1.027.
  32. Sakkas, K., Panias, D., Nomikos, P.P. and Sofianos, A.I. (2014), "Potassium based geopolymer for passive fire protection of concrete tunnels linings", Tunnel. Underg. Space Technol., 43, 148-156. https://doi.org/10.1016/j.tust.2014.05.003.
  33. Sanni, S.H. and Khadiranaikar, R. (2013), "Performance of alkaline solutions on grades of geopolymer concrete", Int. J. Res. Eng. Technol., 2(11), 366-371.
  34. Sarker, P.K., Kelly, S. and Yao, Z. (2014), "Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete", Mater. Des., 63, 584-592. https://doi.org/10.1016/j.matdes.2014.06.059.
  35. Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. https://dx.doi.org/10.12989/acc.2014.2.2.109.
  36. Sharma, A. and Ahmad, J. (2017), "Factors affecting compressive strength of geopolymer concrete-a review", Int. Res. J. Eng. Technol., 4(5), 2026-2031.
  37. Solanki, P. and Dasha, B. (2016), "Mechanical properties of concrete containing recycled materials", Adv. Concrete Constr., 4(3), 207-220. https://dx.doi.org/10.12989/acc.2016.4.1.000.
  38. Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016.
  39. Xu, H. and van Deventer, J.S.J. (2000), "The geopolymerisation of alumino-silicate minerals", Int. J. Min. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.
  40. Zhang, M., Guo, H., El-Korchi, T., Zhang, G. and Tao, M. (2013), "Experimental feasibility study of geopolymer as the next-generation soil stabilizer", Constr. Build. Mater., 47, 1468-1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017.