DOI QR코드

DOI QR Code

Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration

나노여과를 위한 금속유기구조체 기반 박막 나노복합막의 최근 발전

  • Kim, Esther (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 김에스더 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2021.02.04
  • Accepted : 2021.02.22
  • Published : 2021.02.28

Abstract

Advancements in thin-film nanocomposite (TFN) membrane technology for nanofiltration is crucial for removing pollutants from natural resources. In recent years, various metal-organic framework (MOF) modifications have been tested to overcome the drawbacks that are inevitable with conventional thin-film composite (TFC) and TFN membranes. In general, MIL-101(Cr), UiO-66, ZIF-8, and HKUST-1 [Cu3(BCT2)] are MOFs that were proven to exhibit excellent membrane performance in terms of solvent permeability and solute rejection; their respective studies are reviewed in this article. Other novelties, such as the simultaneous use of different MOFs and unique MOF layering techniques (e.g., dip-coating, spray pre-disposition, Langmuir-Schaefer film, etc.) are also discussed as they present alternate solutions for membrane enhancement and/or preparation convenience. Not only are these MOF-modified TFN membranes frequently shown to improve separation performance from their respective TFC and TFN membranes, but many reports also explain their potential for a cost-effective and environmentally friendly process. In this review the thin film nanocomposite nanofiltration membrane is discussed.

나노여과를위한 박막 나노복합체(TFN) 멤브레인 기술의 발전은 천연 자원에서 오염 물질을 제거하는 데 중요하다. 최근에는 기존의 박막 복합체(TFC) 및 나노복합체 멤브레인에서 불가피한 단점을 극복하기 위해 다양한 금속유기구조체(MOF) 수정이 테스트되었다. 일반적으로 MIL-101(Cr), UiO-66, ZIF-8 및 HKUST-1 [Cu3(BCT2)]은 용매 투과성 및 용질 제거 측면에서 막 성능을 현저하게 향상시키는 것으로 입증되었다. 이 리뷰에서는 이러한 MOF가 나노 여과에 미치는 영향에 대한 최근 연구가 논의될 것이다. 서로 다른 금속유기구조체의 동시 사용 및 고유한 금속유기구조체 레이어링 기술(예: 딥 코팅, 스프레이 사전 배치, Langmuir-Schaefer 필름 등)과 같은 다른 새로운 기능도 멤브레인 성능을 향상시켰다. 이러한 MOF 변형 TFN 멤브레인은 각각의 TFC 및 TFN 멤브레인에서 분리 성능을 향상시키는 것으로 자주 나타났을 뿐만 아니라 많은 보고서에서 비용 효율적이고 환경 친화적인 공정에 대한 잠재력을 설명한다.

Keywords

References

  1. J. Hou, H. Zhang, G. P. Simon, and H. Wang, "Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions", Adv Mater., 32, 1902654 (2020). https://doi.org/10.1002/adma.201902654
  2. Y. Peng and W. Yang, "2D metal-organic framework materials for membrane-based separation", Adv. Mater. Interfaces, 7, 1901514 (2020). https://doi.org/10.1002/admi.201901514
  3. Y. Deng, Y. Wu, G. Chen, X. Zheng, M. Dai, and C. Peng, "Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation", Chem. Eng. J., 405, 127004 (2021). https://doi.org/10.1016/j.cej.2020.127004
  4. M. Kalaj, K. C. Bentz, S. Ayala, J. M. Palomba, K. S. Barcus, Y. Katayama, and S. M. Cohen, "MOF-polymer hybrid materials: From simple composites to tailored architectures", Chem. Rev., 120, 8267 (2020). https://doi.org/10.1021/acs.chemrev.9b00575
  5. X. Liu, X. Wang, and F. Kapteijn, "Water and metal-organic frameworks: From interaction toward utilization", Chem. Rev., 120, 8303 (2020). https://doi.org/10.1021/acs.chemrev.9b00746
  6. J. Li, H. Wang, X. Yuan, J. Zhang, and J. W. Chew, "Metal-organic framework membranes for wastewater treatment and water regeneration", Coord. Chem. Rev., 404, 213116 (2020). https://doi.org/10.1016/j.ccr.2019.213116
  7. G. R. Xu, Z. H. An, K. Xu, Q. Liu, R. Das, and H. L. Zhao, "Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications", Coord. Chem. Rev., 427, 213554 (2021). https://doi.org/10.1016/j.ccr.2020.213554
  8. N. Abdullah, N. Yusof, A. F. Ismail, and W. J. Lau, "Insights into metal-organic frameworks-integrated membranes for desalination process: A review", Desalination, 500, 114867 (2021). https://doi.org/10.1016/j.desal.2020.114867
  9. H. Saleem and S. J. Zaidi, "Nanoparticles in reverse osmosis membranes for desalination: A state of the art review", Desalination, 475, 114171 (2020). https://doi.org/10.1016/j.desal.2019.114171
  10. Q. Liu, Z. Li, D. Wang, Z. Li, X. Peng, C. Liu, and P. Zheng, "Metal organic frameworks modified proton exchange membranes for fuel cells", Front. Chem., 8, 00694 (2020). https://doi.org/10.3389/fchem.2020.00694
  11. J. Hou, H. Wang, and H. Zhang, "Zirconium metal-organic framework materials for efficient ion adsorption and sieving", Ind. Eng. Chem. Res., 59, 12907 (2020). https://doi.org/10.1021/acs.iecr.0c02683
  12. J. Safaei, P. Xiong, and G. Wang, "Progress and prospects of two-dimensional materials for membrane-based water desalination", Mater. Today Adv., 8, 100108 (2020). https://doi.org/10.1016/j.mtadv.2020.100108
  13. C. H. Park, C.-S. Kim, J. Sim, H.-S. Park, and Y.-H. Joe, "Membrane performance and chemical instability of 1,3,5-benzenetricarbonyl trichloride", Membr. J., 30, 200 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.200
  14. H. K. Lee, H. T. T. Dao, W. Kang, and Y.-H. Kwon, "Review on changes in surface properties and performance of polyamide membranes when exposed to acidic solutions", Membr. J., 30, 283 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.283
  15. J. H. Lee and J. Kim, "Research trends of metal-organic framework membranes: Fabrication methods and gas separation applications", Membr. J., 25, 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  16. S. Kim, Y. Kim, D. Kim, S. Kim, and J. F. Kim, "Solvent filtration performance of thin film composite membranes based on polyethersulfone support", Membr. J., 29, 348 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.348
  17. S. Park and R. Patel, "Recent progress in quantum dots containing thin film composite membrane for water purification", Membr. J., 30, 293 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.293
  18. A. Elrasheedy, N. Nady, M. Bassyouni, and A. El-Shazly, "Metal organic framework based polymer mixed matrix membranes: Review on applications in water purification", Membr. J., 9, 9070088 (2019).
  19. J. Shen, G. Liu, Y. Han, and W. Jin, "Artificial channels for confined mass transport at the sub-nanometre scale", Nat. Rev. Mater., 6 (2021).
  20. Y. Ban, N. Cao, N. Cao, and W. Yang, "Metal-organic framework membranes and membrane reactors: Versatile separations and intensified processes", Res., 2020, 1583451 (2020).
  21. B.-M. Jun, Y. A. J. Al-Hamadani, A. Son, C. M. Park, M. Jang, A. Jang, N. C. Kim, and Y. Yoon, "Applications of metal-organic framework based membranes in water purification: A review", Sep. Purif. Technol., 247, 116947 (2020). https://doi.org/10.1016/j.seppur.2020.116947
  22. G. Mouchaham, F. S. Cui, F. Nouar, V. Pimenta, J.-S. Chang, and C. Serre, "Metal-organic frameworks and water: 'From old enemies to friends'?", Trends Chem., 2, 990 (2020). https://doi.org/10.1016/j.trechm.2020.09.004
  23. E. L. Butler, C. Petit, and A. G. Livingston, "Poly (piperazine trimesamide) thin film nanocomposite membrane formation based on MIL-101: Filler aggregation and interfacial polymerization dynamics", J. Membr. Sci., 596, 117482 (2020). https://doi.org/10.1016/j.memsci.2019.117482
  24. X. H. Ma, Z. Yang, Z. K. Yao, Z. L. Xu, and C. Y. Tang, "A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes", J. Membr. Sci., 525, 269 (2017). https://doi.org/10.1016/j.memsci.2016.11.015
  25. M. Navarro, J. Benito, L. Paseta, I. Gascon, J. Coronas, and C. Tellez, "Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir-Schaefer technique for nanofiltration", ACS Appl. Mater. Interfaces, 10, 1278 (2018). https://doi.org/10.1021/acsami.7b17477
  26. L. Wang, S. Duan, M. Fang, J. Liu, J. He, J. Li, and J. Lei, "Surface modification route to prepare novel polyamide@NH2-MIL-88B nanocomposite membranes for water treatment", RSC Adv., 6, 71250 (2016). https://doi.org/10.1039/C6RA09080J
  27. Y. Xu, X. Gao, Q. Wang, X. Wang, Z. Ji, and C. Gao, "Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment", RSC Adv., 6, 82669 (2016). https://doi.org/10.1039/C6RA16896E
  28. Y. Xu, X. Gao, X. Wang, Q. Wang, Z. Ji, X. Wang, T. Wu, and C. Gao, "Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101(Cr) nanoparticles for reverse osmosis application", Mater., 9, 870 (2016). https://doi.org/10.3390/ma9110870
  29. C. Echaide-Gorriz, M. Navarro, C. Tellez, and J. Coronas, 'Simultaneous use of MOFs MIL-101(Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration", Dalton Trans., 46, 6244 (2017). https://doi.org/10.1039/c7dt00197e
  30. C. Echaide-Gorriz, S. Sorribas, C. Tellez, and J. Coronas, "MOF nanoparticles of MIL-68(Al), MIL101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes", RSC Adv., 6, 90417 (2016). https://doi.org/10.1039/C6RA17522H
  31. Y. He, Y. P. Tang, D. Ma, and T.-S. Chung, "UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal", J. Membr. Sci., 541, 262 (2017). https://doi.org/10.1016/j.memsci.2017.06.061
  32. X. Liu, N. K. Demir, Z. Wu, and K. Li, "Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination", J. Am. Chem. Soc., 137, 6999 (2015). https://doi.org/10.1021/jacs.5b02276
  33. D. Ma, S. B. Peh, G. Han, and S. B. Chen, "Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection", ACS Appl. Mater. Interfaces, 9, 7523 (2017). https://doi.org/10.1021/acsami.6b14223
  34. D. L. Zhao, W. S. Yeung, Q. Zhao, and T.-S. Chung, "Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination", J. Membr. Sci., 604, 118039 (2020). https://doi.org/10.1016/j.memsci.2020.118039
  35. Y. Guo, X. Wang, P. Hu, and X. Peng, "ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules", Appl. Mater. Today, 5, 103 (2016). https://doi.org/10.1016/j.apmt.2016.07.007
  36. D. Ragab, H. G. Gomaa, R. Sabouni, M. Salem, M. Ren, and J. Zhu, "Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs)", Chem. Eng. J., 300, 273 (2016). https://doi.org/10.1016/j.cej.2016.04.033
  37. L. Sarango, L. Paseta, M. Navarro, B. Zornoza, and J. Coronas, "Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration", J. Ind. Eng. Chem., 59, 8 (2018). https://doi.org/10.1016/j.jiec.2017.09.053
  38. C. Van Goethem, R. Verbeke, S. Hermans, R. Bernstein, and I. F. J. Vankelecom, "Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites", J. Mater. Chem. A, 4, 16368 (2016). https://doi.org/10.1039/C6TA05175H
  39. H. M. Park, K. Y. Jee, and Y. T. Lee, "Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks", J. Membr. Sci., 541, 510 (2017). https://doi.org/10.1016/j.memsci.2017.07.034