DOI QR코드

DOI QR Code

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho (Department of Biology, Kyungpook National University) ;
  • Jo, Seung-Woo (Advanced Bio-Resource Research Center, Kyungpook National University) ;
  • Do, Jeong-Mi (Department of Biology, Kyungpook National University) ;
  • Kim, Il-Sup (Advanced Bio-Resource Research Center, Kyungpook National University) ;
  • Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
  • Received : 2020.09.29
  • Accepted : 2020.12.11
  • Published : 2021.03.28

Abstract

There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.

Keywords

References

  1. Levasseur W, Perre P, Pozzobon V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 41: 107545. https://doi.org/10.1016/j.biotechadv.2020.107545
  2. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. 2016. A Review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids Front. Microbiol. 7: 546. https://doi.org/10.3389/fmicb.2016.00546
  3. Markou G, Nerantzis E. 2013. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol. Adv. 31: 1532-1542. https://doi.org/10.1016/j.biotechadv.2013.07.011
  4. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G. 2014. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv. 32: 1476-1493. https://doi.org/10.1016/j.biotechadv.2014.10.003
  5. Liang MH, Wang L, Wang Q, Zhu J, Jiang JG. High-value bioproducts from microalgae: Strategies and progress. Crit. Rev. Food Sci. Nutr. 59: 2423-2441. https://doi.org/10.1080/10408398.2018.1455030
  6. Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F. 2018. High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnol. Biofuels 11: 227. https://doi.org/10.1186/s13068-018-1225-6
  7. Martinez-Hernandez GB, Castillejo N, Carrion-Monteagudo MDM, Artes F, Artes-Hernandez F. 2018. Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Sci. Technol. Int. 24: 172-182. https://doi.org/10.1177/1082013217740000
  8. Ramos GJP, Bicudo C, do N. Moura CW. 2015. Oocystis apicurvata sp. nov. (Oocystaceae, Trebouxiophyceae), a new species of green algae from Chapada Diamantina, northeast Brazil. Braz. J. Bot. 38: 171-173. https://doi.org/10.1007/s40415-014-0118-6
  9. Dunker S, Althammer J, Pohnert G, Wilhelm C, Fateful A. 2017. Meeting of two phytoplankton species-chemical vs. cell-cell-interactions in co-cultures of the green algae Oocystis marsonii and the cyanobacterium Microcystis aeruginosa. Microb. Ecol. 74: 22-32. https://doi.org/10.1007/s00248-016-0927-1
  10. Hepperle D, Hegewald E, Krienitz L. 2000. Phylogenetic position of the Oocystaceae (Chlorophyta). J. Phycol. 36: 590-595. https://doi.org/10.1046/j.1529-8817.2000.99184.x
  11. Wang X, Zhang Y, Li C, Huang X, Li F, Wang X, Li G. 2020. Allelopathic effect of Oocystis borgei culture on Microcystis aeruginosa. Environ. Technol. 1-10.
  12. Soldo D, Hari R, Sigg L, Behra R. 2005. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat. Toxicol. 71: 307-317. https://doi.org/10.1016/j.aquatox.2004.11.011
  13. Huang X, Li X, Wang Y, Zhou M. 2012. Effects of environmental factors on the uptake rates of dissolved nitrogen by a salt-water green alga (Oocystis borgei Snow). Bull. Environ. Contam. Toxicol. 89: 905-909. https://doi.org/10.1007/s00128-012-0767-8
  14. Foerster JW. 1971. Environmentally induced morphological changes in Oocystis lacustris (?) Chodat (Chlorophyta). Bull. Torrey Bot. Club. 98: 225-227. https://doi.org/10.2307/2483691
  15. Liu M, Huang XH, Li CL, Gu B. 2020. Study on the uptake of dissolved nitrogen by Oocystis borgei in prawn (Litopenaeus vannamei) aquaculture ponds and establishment of uptake model. Aquac. Int. 28: 1445-1458. https://doi.org/10.1007/s10499-020-00534-z
  16. El-Naggar NEA, Hamouda RA, Rabei NH, Mousa IE, Abdel-Hamid MS. 2019. Phycoremediation of lithium ions from aqueous solutions using free and immobilized freshwater green alga Oocystis solitaria: mathematical modeling for bioprocess optimization. Environ. Sci. Pollut. Res. 26: 19335-19351. https://doi.org/10.1007/s11356-019-05214-x
  17. Xia S, Gao B, Fu J, Xiong J, Zhang C. 2018. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J. Biosci. Bioeng. 126: 723-729. https://doi.org/10.1016/j.jbiosc.2018.06.002
  18. Cao M, Wang S, Gao Y, Pan X, Wang X, Deng R, et al. 2020. Study on physicochemical properties and antioxidant activity of polysaccharides from Desmodesmus armatus. J. Food Biochem. 44: e13243.
  19. Jones J, Allam B, Espinosa EP. 2020. Particle selection in suspension-feeding bivalves: Does one model fit all? Biol. Bull. 238: 41-53. https://doi.org/10.1086/707718
  20. Mun S. 2018. Optimization of production rate, productivity, and product concentration for a simulated moving bed process aimed atfucose separation using standing-wave-design and genetic algorithm. J. Chromatogr. A 1575: 113-121. https://doi.org/10.1016/j.chroma.2018.09.025
  21. Jeon YJ, Wijesinghe WA, Kim SK. 2011. Functional properties of brown algal sulfated polysaccharides, fucoidans. Adv. Food Nutr. Res. 64: 163-78. https://doi.org/10.1016/B978-0-12-387669-0.00012-0
  22. Schultz-Johansen M, Cueff M, Hardouin K, Jam M, Larocque R,Glaring RMA, et al. 2018. Discovery and screening of novel metagenome-derived GH107 enzymes targeting sulfated fucans from brown algae. FEBS J. 285: 4281-4295. https://doi.org/10.1111/febs.14662
  23. Nunes C, Coimbra MA. 2019. The Potential of fucose-containing sulfated polysaccharides as scaffolds for biomedical applications. Curr. Med. Chem. 26: 6399-6411. https://doi.org/10.2174/0929867326666181213093718
  24. Ngo DH, Kim SK. 2013. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 62: 70-75. https://doi.org/10.1016/j.ijbiomac.2013.08.036
  25. Kim SH, Sunwoo IY, Hong HJ, Awah CC, Jeong GT, Kim SK. 2019. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst. Eng. 42: 1517-1526. https://doi.org/10.1007/s00449-019-02149-y
  26. Xie D, Jackson EN, Zhu Q. 2015. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl. Microbiol. Biotechnol. 99: 1599-1610. https://doi.org/10.1007/s00253-014-6318-y
  27. Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM. 2019. How does high DHA fish oil affect health? A systematic review of evidence. Crit. Rev. Food Sci. Nutr. 59:1684-1727. https://doi.org/10.1080/10408398.2018.1425978
  28. Wen ZY, Chen F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae, Biotechnol. Adv. 21: 273-294. https://doi.org/10.1016/S0734-9750(03)00051-X
  29. Aussant J, Guiheneuf F, Stengel DB. 2018. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl. Microbiol. Biotechnol. 102: 5279-5297. https://doi.org/10.1007/s00253-018-9001-x
  30. Zhao Y, Wang HP, Han B, Yu X. 2019. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresour. Technol. 274: 549-556. https://doi.org/10.1016/j.biortech.2018.12.030
  31. Yang R, Wei D, Xie J. 2020. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 40: 993-1009. https://doi.org/10.1080/07388551.2020.1805402
  32. Santos CA, Reis A. 2014. Microalgal symbiosis in biotechnology. Appl. Microbiol. Biotechnol. 98: 5839-5846. https://doi.org/10.1007/s00253-014-5764-x
  33. Lutzu GA, Turgut Dunford N. 2018 Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Front. Biosci. (Landmark Ed) 23: 1487-1504. https://doi.org/10.2741/4656
  34. Cooper NB, Smith AG. 2015. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 26: 147-153. https://doi.org/10.1016/j.pbi.2015.07.003
  35. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, et al. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585. https://doi.org/10.1016/j.biortech.2014.10.159
  36. Perera I, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. 2018. Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Appl. Microbiol. Biotechnol. 102: 7351-7363. https://doi.org/10.1007/s00253-018-9192-1
  37. Rossi S, Bellucci M, Marazzi F, Mezzanotte V, Ficara E. 2018. Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Sci. Technol. 78: 207-215. https://doi.org/10.2166/wst.2018.078
  38. Solimeno A, Parker L, Lundquist T, Garcia J. 2017. Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Sci. Total Environ. 601-602: 646-657. https://doi.org/10.1016/j.scitotenv.2017.05.215
  39. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. 2019. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J. Appl. Microbiol. 126: 359-368. https://doi.org/10.1111/jam.14095
  40. Meza B, de-Bashan LE, Hernandez JP, Bashan Y. 2015. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res. Microbiol. 166: 399-407. https://doi.org/10.1016/j.resmic.2015.03.001
  41. Tandon P, Jin Q, Huang L. 2017. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microb. Cell Fact. 16: 219. https://doi.org/10.1186/s12934-017-0834-2
  42. Wirth R, Pap B, Bojti T, Shetty P, Lakatos G, Bagi Z, et al. 2020. Chlorella vulgaris and its phycosphere in wastewater: Microalgae-bacteria interactions during nutrient removal. Front. Bioeng. Biotechnol. 8: 557572. https://doi.org/10.3389/fbioe.2020.557572
  43. Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu HQ, et al. 2017. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresour. Technol. 241: 1127-1137. https://doi.org/10.1016/j.biortech.2017.06.054
  44. Soltis DE, Soltis PS. 2003. Applying the bootstrap in phylogeny reconstruction. Stat. Sci. 18: 256-267. https://doi.org/10.1214/ss/1063994980
  45. Kim JH, Affan A, Jang J, Kang MH, Ko AR, Jeon SM, et al. 2015. Morphological, molecular, and biochemical characterization of astaxanthin-producing green microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) isolated from Korea. J. Microbiol. Biotechnol. 25: 238-246. https://doi.org/10.4014/jmb.1410.10032
  46. Jeon SM, Kim JH, Kim T, Park A, Ko AR, Ju SJ, et al. 2015. Morphological, molecular, and biochemical characterization of monounsaturated fatty acids-rich Chlamydomonas sp. KIOST-1 isolated from Korea. J. Microbiol. Biotechnol. 25: 723-731. https://doi.org/10.4014/jmb.1412.12056
  47. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1-61. https://doi.org/10.1099/00221287-111-1-1
  48. Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49: 1-7. https://doi.org/10.1128/AEM.49.1.1-7.1985
  49. Bold HC. 1949. The morphology of Chlamydomonas chlamydogama, sp. Nov. Bull. Torrey Bot. Club. 76: 101-108. https://doi.org/10.2307/2482218
  50. Fabregas J, Dominguez A, Regueiro M, Maseda A, Otero A. 2000. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 53: 530-535. https://doi.org/10.1007/s002530051652
  51. Laurens LM, Dempster TA, Jones HD, Wolfrum EJ, Van Wychen S, McAllister JS, et al. 2012. Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal. Chem. 84: 1879-1887. https://doi.org/10.1021/ac202668c
  52. Van Wychen S, Laurens LML. 2016. Determination of total carbohydrates in algal biomass: Laboratory analytical procedure (LAP). NREL, Golden, CO, United States.
  53. Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, et al. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155: 330-333. https://doi.org/10.1016/j.biortech.2013.12.077
  54. Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, et al. 2013. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80: 50628.
  55. Du Z, Hu B, Ma X, Cheng Y, Liu Y, Lin X, et al. 2013. Catalytic pyrolysis of microalgae and their three major components: carbohydrates, proteins, and lipids. Bioresour. Technol. 130: 777-782. https://doi.org/10.1016/j.biortech.2012.12.115
  56. Given PH, Weldon D, Zoeller JH. 1986. Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Fuel 65: 849-854. https://doi.org/10.1016/0016-2361(86)90080-3
  57. Osundeko O, Davies H, Pittman JK. 2013. Oxidative stress-tolerant microalgae strains are highly efficient for biofuel feedstock production on wastewater. Biomass Bioenergy 56: 284-294. https://doi.org/10.1016/j.biombioe.2013.05.027
  58. Stenclova L, Fucikova K, Kastovsky J, Pazoutova M. 2017. Molecular and morphological delimitation and generic classification of the family Oocystaceae (Trebouxiophyceae, Chlorophyta). J. Phycol. 53: 1263-1282. https://doi.org/10.1111/jpy.12581
  59. Asker D, Beppu T, Ueda K. 2007. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol. Lett. 273: 140-148. https://doi.org/10.1111/j.1574-6968.2007.00760.x
  60. Krzeminska I, Pawlik-Skowronska B, Trzcinska M, Tys J. 2014. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng. 37: 735-741. https://doi.org/10.1007/s00449-013-1044-x
  61. Gouveia JD, Ruiz J, van den Broek LAM, Hesselink T, Peters S, Kleinegris DMM, et al. 2017. Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. J. Biotechnol. 248: 77-86. https://doi.org/10.1016/j.jbiotec.2017.03.008
  62. Korponai K, Szabo A, Somogyi B, Boros E, Borsodi AK, Jurecska L, et al. 2019. Dual bloom of green algae and purple bacteria in an extremely shallow soda pan. Extremophiles 23: 467-477. https://doi.org/10.1007/s00792-019-01098-4
  63. Lian J, Wijffels RH, Smidt H, Sipkema D. 2018. The effect of the algal microbiome on industrial production of microalgae. Microb. Biotechnol. 11: 806-818. https://doi.org/10.1111/1751-7915.13296
  64. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
  65. Cho K, Heo J, Cho DH, Tran QG, Yun JH, Lee SM, et al. 2019. Enhancing algal biomass and lipid production by phycospheric bacterial volatiles and possible growth enhancing factor. Algal Res. 37: 186-194. https://doi.org/10.1016/j.algal.2018.11.011
  66. Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. 2019. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit. Rev. Biotechnol. 39: 709-731. https://doi.org/10.1080/07388551.2019.1597828
  67. Cho DH, Ramanan R, Heo J, Kang Z, Kim BH, Ahn CY, et al. 2015. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191: 481-487. https://doi.org/10.1016/j.biortech.2015.02.013
  68. Yang S, Wan H, Wang R, Hao D. 2019. Sulfated polysaccharides from Phaeodactylum tricornutum: isolation, structural characteristics, and inhibiting HepG2 growth activity in vitro. Peer J 7: e6409. https://doi.org/10.7717/peerj.6409
  69. Trabelsi L, Chaieb O, Mnari A, Abid-Essafi S, Aleya L. 2016. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement. Altern. Med. 16: 210. https://doi.org/10.1186/s12906-016-1198-6
  70. Lopez G, Yate C, Ramos FA, Cala MP, Restrepo S, Baena S. 2019. Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci. Rep. 9: 10791. https://doi.org/10.1038/s41598-019-46645-3
  71. Kothri M, Mavrommati M, Elazzazy AM, Baeshen MN, Moussa TAA, Aggelis G. 2020. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol. Lett. 367: fnaa028. https://doi.org/10.1093/femsle/fnaa028
  72. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. 2019. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: Bridging the gap between supply and demand. Nutrients 11: 89. https://doi.org/10.3390/nu11010089
  73. Chauton MS, Reitan KI, Norsker NH, Tveteras R, Kleivdal HT. 2015. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436: 95-103. https://doi.org/10.1016/j.aquaculture.2014.10.038
  74. Arguelles EDLR, Laurena AC, Monsalud RG, Martinez-Goss MR. 2017. Fatty acid profile and fuel-derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I-AU1), as potential source of renewable lipid and high quality biodiesel. J. Appl. Phycol. 30: 411-419. https://doi.org/10.1007/s10811-017-1264-6