DOI QR코드

DOI QR Code

DECOMPOSITION OF THE KRONECKER SUMS OF MATRICES INTO A DIRECT SUM OF IRREDUCIBLE MATRICES

  • Gu, Caixing (Department of Mathematics California Polytechnic State University) ;
  • Park, Jaehui (Research Institute of Mathematics Seoul National University) ;
  • Peak, Chase (Department of Mathematics California Polytechnic State University) ;
  • Rowley, Jordan (Department of Mathematics California Polytechnic State University)
  • Received : 2020.05.15
  • Accepted : 2020.12.23
  • Published : 2021.05.31

Abstract

In this paper, we decompose (under unitary similarity) the Kronecker sum A ⊞ A (= A ⊗ I + I ⊗ A) into a direct sum of irreducible matrices, when A is a 3×3 matrix. As a consequence we identify 𝒦(A⊞A) as the direct sum of several full matrix algebras as predicted by Artin-Wedderburn theorem, where 𝒦(T) is the unital algebra generated by Tand T*.

Keywords

Acknowledgement

Jaehui Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant No. NRF2018R1A2B6004116).

References

  1. W. B. Arveson, Unitary invariants for compact operators, Bull. Amer. Math. Soc. 76(1970), 88-91. https://doi.org/10.1090/S0002-9904-1970-12374-6
  2. R. Bellman, Introduction to Matrix Analysis, Second edition, McGraw-Hill Book Co., New York, 1970.
  3. J. W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits and Systems 25 (1978), no. 9, 772-781. https://doi.org/10.1109/TCS.1978.1084534
  4. R. A. Brualdi, Combinatorial verification of the elementary divisors of tensor products, Linear Algebra Appl. 71 (1985), 31-47. https://doi.org/10.1016/0024-3795(85)90233-2
  5. J. A. Dias da Silva and Y. O. Hamidoune, A note on the minimal polynomial of the Kronecker sum of two linear operators, Linear Algebra Appl. 141 (1990), 283-287. https://doi.org/10.1016/0024-3795(90)90326-8
  6. X. Fang and C. Gu, Abundance of irreducible tensor product of linear operators, in preparation.
  7. J. S. Fang, C.-L. Jiang, and P. Y. Wu, Direct sums of irreducible operators, Studia Math. 155 (2003), no. 1, 37-49. https://doi.org/10.4064/sm155-1-3
  8. D. Farenick, Arveson's criterion for unitary similarity, Linear Algebra Appl. 435 (2011), no. 4, 769-777. https://doi.org/10.1016/j.laa.2011.01.039
  9. D. Farenick, V. Futorny, T. G. Gerasimova, V. V. Sergeichuk, and N. Shvai, A criterion for unitary similarity of upper triangular matrices in general position, Linear Algebra Appl. 435 (2011), no. 6, 1356-1369. https://doi.org/10.1016/j.laa.2011.03.021
  10. P. A. Fillmore and D. M. Topping, Sums of irreducible operators, Proc. Amer. Math. Soc. 20 (1969), 131-133. https://doi.org/10.2307/2035974
  11. P. A. Fuhrmann and U. Helmke, On the elementary divisors of the Sylvester and Lyapunov maps, Linear Algebra Appl. 432 (2010), no. 10, 2572-2588. https://doi.org/10.1016/j.laa.2009.12.003
  12. V. Futorny, R. A. Horn, and V. V. Sergeichuk, A canonical form for nonderogatory matrices under unitary similarity, Linear Algebra Appl. 435 (2011), no. 4, 830-841. https://doi.org/10.1016/j.laa.2011.01.042
  13. C. Gu, Reducing subspaces of non-analytic Toeplitz operators on weighted Hardy and Dirichlet spaces of the bidisk, J. Math. Anal. Appl. 459 (2018), no. 2, 980-996. https://doi.org/10.1016/j.jmaa.2017.11.004
  14. C. Gu, Common reducing subspaces of several weighted shifts with operator weights, J. Math. Soc. Japan 70 (2018), no. 3, 1185-1225. https://doi.org/10.2969/jmsj/74677467
  15. C. Gu, A. Mendes, and J. Park, Reducing subspaces of tensor products of operators and representation of permutation group, in preparation.
  16. K. Guo and X. Wang, Reducing subspaces of tensor products of weighted shifts, Sci. China Math. 59 (2016), no. 4, 715-730. https://doi.org/10.1007/s11425-015-5089-y
  17. P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215-223. http://projecteuclid.org/euclid.mmj/1028999975 https://doi.org/10.1307/mmj/1028999975
  18. C. Jiang and Z. Wang, Strongly Irreducible Operators on Hilbert Space, Pitman Research Notes in Mathematics Series, 389, Longman, Harlow, 1998.
  19. C. S. Kubrusly, Regular lattices of tensor products, Linear Algebra Appl. 438 (2013), no. 1, 428-435. https://doi.org/10.1016/j.laa.2012.07.013
  20. C. S. Kubrusly and N. Levan, Preservation of tensor sum and tensor product, Acta Math. Univ. Comenian. (N.S.) 80 (2011), no. 1, 133-142.
  21. W. S. Li and E. Strouse, Reflexivity of tensor products of linear transformations, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2021-2029. https://doi.org/10.2307/2160937
  22. D. E. Littlewood, On unitary equivalence, J. London Math. Soc. 28 (1953), 314-322. https://doi.org/10.1112/jlms/s1-28.3.314
  23. C. Pearcy, A complete set of unitary invariants for operators generating finite W*-algebras of type I, Pacific J. Math. 12 (1962), 1405-1416. http://projecteuclid.org/euclid.pjm/1103036140 https://doi.org/10.2140/pjm.1962.12.1405
  24. H. Radjavi, Every operator is the sum of two irreducible ones, Proc. Amer. Math. Soc. 21 (1969), 251-252. https://doi.org/10.2307/2036905
  25. H. Radjavi and P. Rosenthal, Matrices for operators and generators of B(H), J. London Math. Soc. (2) 2 (1970), 557-560. https://doi.org/10.1112/jlms/2.Part_3.557
  26. H. Radjavi and P. Rosenthal, Invariant Subspaces, Second edition, Dover Publications, Inc., Mineola, New York, 2003.
  27. M. Rosenblum, On the operator equation BX - XA = Q, Duke Math. J. 23 (1956), 263-269. http://projecteuclid.org/euclid.dmj/1077466818 https://doi.org/10.1215/S0012-7094-56-02324-9
  28. H. Shapiro, A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147 (1991), 101-167. https://doi.org/10.1016/0024-3795(91)90232-L
  29. W. Specht, Zur Theorie der Matrizen. II, Jber. Deutsch. Math.-Verein. 50 (1940), 19-23.
  30. A. Trampus, A canonical basis for the matrix transformation X → AXB, J. Math. Anal. Appl. 14 (1966), 153-160. https://doi.org/10.1016/0022-247X(66)90068-0
  31. A. Trampus, A canonical basis for the matrix transformation X → AX + XB, J. Math. Anal. Appl. 14 (1966), 242-252. https://doi.org/10.1016/0022-247X(66)90024-2
  32. W. Tung, Group Theory in Physics, World Scientific, Singapore, 1985.
  33. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97-113.