DOI QR코드

DOI QR Code

Theoretical Study on the Selective Reduction of Chiral [2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH Derivatives and Aromatic Ketone

[2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH 유도체와 방향족 케톤의 선택적 환원에 대한 이론적 연구

  • 이철재 (영남이공대학교 화장품화공계열) ;
  • 김종미 (경북과학대학교 작업치료과)
  • Received : 2021.04.02
  • Accepted : 2021.04.30
  • Published : 2021.05.31

Abstract

In this work, we study the properties of molecular structure and boundary orbital functions of the DPHMP-AlH and propiophenone and butyrophenone, which are forms of alkoxy-amine-aluminum derivatives. Furthermore, we investigate the effect on the selective reduction of the final products (R), (S)-phenylpropanol and (R), (S)-phenylbutanol by calculating the stereoscopic and thermodynamic parameters of the transition state. Considering the three-dimensional molecular structural stability, the transition status of (S) types DPHMP-AlH and alkylphenone was found to be more stable, resulting in the selective reductions of DPHM-AlH and alkylphenone from this result: (S)-(1)-phenylpropanol and (S)-(1)-phenylbutanol was confirmed that the formation was advantageous.

본 연구에서는 알콕시-아민-알루미늄 유도체인 DPHMP-AlH와 프로피오페논, 부티로페논과의 분자구조 및 경계궤도함수의 특성을 알아보았다. 또한, 전이상태의 입체구조 및 열역학적 파라미터를 계산하여 최종 생성물인 (R),(S)-페닐프로판올과 (R),(S)-페닐부탄올의 선택적 환원에 미치는 영향을 조사하였다. 그 결과 입체 분자구조적 안정성을 고려해 볼 때 (S)형 DPHMP-AlH와 알킬페논의 전이상태가 더 안정한 것으로 나타났으며, 이 결과로부터 DPHMP-AlH와 알킬페논의 선택적 환원으로 얻어진 최종 결과물은 (S)-(1)-페닐프로판올과 (S)-(1)-페닐부탄올의 형성이 유리한 것을 확인하였다.

Keywords

References

  1. J.Ye, C. Wang, L. Chen, X. Wu, L. Zhou, J. Sun, Adv.Synth. Catal. 358, 1042-1047, (2016) https://doi.org/10.1002/adsc.201501061
  2. Hirao, A; Itsuno, S.; Hirao, S.; Nakahama, S.; Yamazaki, N. J. Chem. Soc. Perkin Trans. 1, 315(1981).
  3. P.L. Southwick, N. Latif, B.M. Fitzgerald, N.M. Zaczek, J. Org. Chem. 31, (1), 1-13, (1966) https://doi.org/10.1021/jo01339a001
  4. Krishnamarthy, S.; Vogel, F.; Brown, H. C. J. Org. Chem., 42, 2534, (1977). https://doi.org/10.1021/jo00434a051
  5. Brown, H. C.; Mandal A. K. J. Org. Chem., 49, 2558, (1984). https://doi.org/10.1021/jo00188a008
  6. Imai, T.; Yamamoto, T.; Sato, T.; Wollmann, T. A.; Kennedy, R. M.; Masamune, S. J. Am. Chem. Soc., 108, 7402, (1986). https://doi.org/10.1021/ja00283a042
  7. Midland, M. M.; Kazubski, A. J. Org. Chem., 47, 2495, (1982). https://doi.org/10.1021/jo00133a057
  8. J.P. Stewart, J. Comput. Chem. 10, (2), 209 (1989). https://doi.org/10.1002/jcc.540100208
  9. HyperChem, Molecular visualization and simulation program package, Hypercube, Gainsville, Fl. (1995-2011).
  10. C.J. Lee, J.W. Choi, W.G. Jang, The Journal of the Convergence on Culture Technology 4, (4) 343-348 (2018). http://dx.doi.org/10.17703/JCCT.2018.4.4.343
  11. J.M. Kim, J. Korean Society of Industrial Application, 12, (3) 143-147, (2009).