DOI QR코드

DOI QR Code

Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116

  • Oh, Jiyoung (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, Gachon University)
  • Received : 2021.03.12
  • Accepted : 2021.04.23
  • Published : 2021.06.30

Abstract

Bacteriophages (phages) are known determinants of kimchi microbial ecology. Lactobacillus plantarum is related to kimchi over-acidification during the late stages of kimchi fermentation. A phage infecting Lac. plantarum was isolated from kimchi and characterized. The phage population for kimchi in a market was 2.3 log particles/mL, which corresponded to 32% of the bacterial population on a log scale. The isolated phage was designated as ΦLP12116. ΦLP12116 which belonged to the Siphoviridae family and has a very narrow host range, infecting only Lac. plantarum. The phage was stable at a lactic acid concentration of 1.0% and pH 4.0 at 4℃, indicating that it could survive in kimchi. In the kimchi extract broth treated by the phage, the growth of Lac. plantarum KCCM 12116 was inhibited by 2.2 log CFU/mL compared to the growth in non-phage-treated broth. Therefore, this study suggests that the growth of Lac. plantarum, which is known as an acid-producing strain during late fermentation in kimchi, may be controlled using the phage.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (grant 2020R1F1A107000111).

References

  1. Acker HW. Tailed bacteriophages: The Order Caudovirales. Adv. Virus Res. 51: 135-201 (1999)
  2. Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y, Mahony J, Grard T, Cambillau C, Chapot-Chartier MP, Sinderen DV. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 5: 1-11 (2014) https://doi.org/10.3391/mbi.2014.5.1.01
  3. Ali Y, Koberg S, Hessner S, Sun X, Rabe B, Back A, Neve H, Heller KJ. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front. Microbiol. 5: 98-98 (2014) https://doi.org/10.3389/fmicb.2014.00098
  4. Baptista C, Santos MA, Sao-Jose C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J. Bacteriol. 190: 4989-4996 (2008) https://doi.org/10.1128/JB.00349-08
  5. Caso JL, Reyes-Gavilan CGDS, Herrero M, Montilla A, Rodriguez A, Suarez J. Isolation and characterization of temperate and virulent bacteriophages of Lactobacillus plantarum. J. Dairy Sci. 78: 741-750 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76685-1
  6. Chang JY, Chang HC. Improvement in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. J. Food Sci. 75: M103-M110 (2010) https://doi.org/10.1111/j.1750-3841.2009.01486.x
  7. Chen X, Xi Y, Zhang H, Wang M, Fan Y, Wu W. Characterization and adsorption of Lactobacillus virulent phage P1. J. Dairy Sci. 99: 6995-7001 (2016) https://doi.org/10.3168/jds.2016-11332
  8. Cho JH, Lee SJ, Choi JJ, Chung CH. Chemical and sensory profiles of Dongchimi (Korean watery radish kimchi) liquids based on descriptive and chemical analyses. Food Sci. Biotechnol. 24: 497-506 (2015) https://doi.org/10.1007/s10068-015-0065-4
  9. da Silva Duarte V, Giaretta S, Campanaro S, Treu L, Armani A, Tarrah A, Oliveira de Paula S, Giacomini A, Corich V. A Cryptic non-inducible prophage confers phage-immunity on the Streptococcus thermophilus M17PTZA496. Viruses 11: 7 (2019) https://doi.org/10.3390/v11010007
  10. Han JS, Kang J. Retardation of Kimchi fermentation by addition of glucono-δ-lacton. J. Korean Soc Food Sci. Nutr. 33: 553-559 (2004) https://doi.org/10.3746/JKFN.2004.33.3.553
  11. Jonczyk E, Klak M, Miedzybrodzki R, Gorski A. The influence of external factors on bacteriophages-Review. Folia Microbiol. 56:191-200 (2011) https://doi.org/10.1007/s12223-011-0039-8
  12. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon,CO. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77: 2264-2274 (2011) https://doi.org/10.1128/AEM.02157-10
  13. Jurczak-Kurek A, Gasior T, Nejman-Falenczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M. Mieszkoswska A, Wrobel B, Wegrzn G, Wegryn A. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 6: 34338-34354 (2016) https://doi.org/10.1038/srep34338
  14. Kim HY, Bong YJ, Jeong JK, Lee S, Kim BY, Park KY. Heterofermentative lactic acid bacteria dominate in Korean commercial kimchi. Food Sci. Biotechnol. 25: 541-545 (2016) https://doi.org/10.1007/s10068-016-0075-x
  15. Kleppen HP, Holo H, Jeon SR, Nes IF, Yoon SS. Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from kimchi. Appl. Environ. Microbiol. 78: 7299-7308 (2012) https://doi.org/10.1128/AEM.00031-12
  16. Kong CS, Bak SS, Rhe SH, Park KY. Standardization of manufactured method and lactic acid bacteria growth and CO2 levels of Nabak kimchi at different fermentation temperatures. J. Korean Soc. Food Sci. Nutr. 34: 707-714 (2005) https://doi.org/10.3746/JKFN.2005.34.5.707
  17. Kong SJ. Weissella-Leuconostoc succession with bacteriophage during kimchi fermentation and bacteriophage characterization. MS thesis, Gachon University, Seongnam, Korea (2019)
  18. Kong SJ, Park JH. Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi. Food Sci. Biotechnol. 29: 873-8781 (2020) https://doi.org/10.1007/s10068-019-00723-4
  19. Kutter E. Phage host range and efficiency of plating. Vol. 1, pp 141-149. In: Bacteriophages Methods and Protocols. Clokie MRJ, Kropinski AM (eds). Humana Press, New York, USA. (2009)
  20. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317-327 (2010) https://doi.org/10.1038/nrmicro2315
  21. Lee K, Lee Y. Effect of Lactobacillus plantarum as a starter on the food quality and microbiota of kimchi. Food Sci. Biotecnol. 19: 641-646 (2010) https://doi.org/10.1007/s10068-010-0090-2
  22. Lee KH, Byun MW. Quality changes of kimchi manufactured with sanitized materials by ozone and gamma irradiation during storage. J. Korean Soc. Food Sci. Nutr. 36: 216-221 (2007) https://doi.org/10.3746/JKFN.2007.36.2.216
  23. Lee KH, Lee JH. Isolation of Leuconostoc and Weissella species inhibiting the growth of Lactobacillus sakei from Kimchi. Korean J. Microbiol. Biotechnol. 39: 175-181 (2011)
  24. Lim CR, Park HK, Han HU. Revaluation of isolation and identification of Gram-positive bacteria in kimchi. Kor. J. Microbiol. 27: 404-414 (1989)
  25. Lu Z, Breidt F, Plengvidhya V, Fleming HP. Bacteriophage ecology in commercial sauerkraut fermentations. Appl. Environ. Microbiol. 69: 3192-3202 (2003) https://doi.org/10.1128/AEM.69.6.3192-3202.2003
  26. Lu Z, Perez-Diaz IM, Hayes JC, Breidt F. Bacteriophage ecology in a commercial cucumber fermentation. Appl. Environ. Microbiol. 78: 8571-8578 (2012) https://doi.org/10.1128/AEM.01914-12
  27. Lunde M, Aastveit AH, Blatny JM, Nes IF. Effects of diverse environmental conditions on ΦLC3 prophage stability in Lactoccocus lactis. Appl. Environ. Microbiol. 71: 721-727 (2005) https://doi.org/10.1128/AEM.71.2.721-727.2005
  28. Mahony J, Cambillau C, van Sinderen D. Host recognition by lactic acid bacterial phages. FEMS Microbiol. Rev. 41: S16-S26 (2017) https://doi.org/10.1093/femsre/fux019
  29. Manohar P, Tamhankar AJ, Lundborg CS, Ramesh N. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS One 13: e0206278 (2018) https://doi.org/10.1371/journal.pone.0206278
  30. Marco MB, Garneau M, Tremblay JE, Quiberoni D, Moinneau A. Characterization of two virulent phages of Lactobacillus plantarum. Appl. Environ. Microbiol. 78: 8719-8734 (2012) https://doi.org/10.1128/AEM.02565-12
  31. Mheen TI, Kwon TW. Effect of temperature and salt concentration on kimchi fermentation. Korean. J. Food Sci. Technol. 16: 443- 450 (1984)
  32. Ortman AC, Suttle CA. Determination of virus abundance by epifluorescence microsopy. Vol. 1, pp87-95. In: Bacteriophages Methods and Protocols. Clokie MRJ, Kropinski AM (eds). Humana Press, New York, USA. (2009)
  33. Park EJ, Chun J, Cha CJ, Park WS, Jeon CO, Bae JW. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30: 197-204 (2012) https://doi.org/10.1016/j.fm.2011.10.011
  34. Park JG, Kim JH, Park JN, Kim YD, Kim WG, Lee JW, Hwang HJ, Byun MW. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability. Radiat. Phys. Chem. 77: 497-502 (2008) https://doi.org/10.1016/j.radphyschem.2007.08.005
  35. Park WJ. Succession of lactic acid bacteria and bacteriophage during Dongchimi fermentation and bacteriophage characterization. MS thesis, Gachon University, Seongnam, Korea (2017)
  36. Pringsulaka O, Patarasinpaiboon N, Suwannasai N, Atthakor W, Rangsiruji A. Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiol. 28: 518-525 (2011) https://doi.org/10.1016/j.fm.2010.10.011
  37. Pujato SA, Guglielmotti DM, Martinez-Garcia M, Quiberoni A, Mojica FJM. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 257: 128-137 (2017) https://doi.org/10.1016/j.ijfoodmicro.2017.06.009
  38. Rattanachaikunsopon P, Phumkhachorn P. Bacteriophages ΦLPN014 infecting Lactobacillus plantarum N014, A potential starter culture for NHAM fermentation. Ann. Exp. Bio. 2: 1-7 (2014)
  39. Renata GK, Leuschner EKA, Hammes WP. Characterization of a virulent Lactobacillus sake phage PWH2. Appl. Microbiol. Biotechnol. 34: 255-260 (1993)
  40. Shon KH, Lee HJ. Effect of high pressure treatment on the quality and storage of kimchi. Int. Food Sci. Technol. 33: 359-365 (1998) https://doi.org/10.1046/j.1365-2621.1998.00138.x
  41. Sunthornthummas S, Doi K, Rangsiruji A, Sarawaneeyaruk S, Pringsulaka O. Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control 73: 1353-1361 (2017) https://doi.org/10.1016/j.foodcont.2016.10.052
  42. van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. R. 80: 745-763 (2016) https://doi.org/10.1128/MMBR.00011-16
  43. Wang C, Cui Y, Qu X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 200: 195-201 (2018) https://doi.org/10.1007/s00203-017-1446-2
  44. Wang L, Zhu Z, Qian H, Li Y, Chen Y, Ma P, Gu B. Comparative genome analysis of 15 clinical Shigella flexneri strains regarding virulence and antibiotic resistance. AIMS Microbiol. 5: 205-222 (2019) https://doi.org/10.3934/microbiol.2019.3.205
  45. Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME. Phage-bacteria infection networks. Trends Microbiol. 21: 82-91 (2013) https://doi.org/10.1016/j.tim.2012.11.003