Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water

화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정

  • Received : 2021.05.03
  • Accepted : 2021.06.18
  • Published : 2021.06.30

Abstract

Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Keywords

References

  1. Fan, Y., Yankulin L., Thomas, P., Mbanaso, C., Antohe, A., Garg, R., Wang, Y., Murray, T., Wuest, A., Goodwin, F., Huh, S., Cordes, A., Naulleau, P., Goldberg, K., Iacopo, M. I., Gullikson, E., Denbeaux, G., "Carbon Contamination Topography Analysis of EUV Masks", Proc. SPIE., Vol. 7636, pp.72713U1-9, (2010).
  2. Ryoo, K., Jung, Y., Choi, I., Lee, J., Choi, B., "Evolutional Wet Cleaning in the Extreme Ultraviolet Era", ECS Journal of Solid State Science and Technology, 8(6) pp.1-4, (2019).
  3. Venkatesh, R. P., Kim, M., Park, G., "Contamination Removal from UV and EUV Photomasks", Developments in Surface Contamination and Cleaning : Methods for Surface Cleaning, William Andrew, 9, pp. 135-173, (2017)
  4. Ryoo, K., Jung, Y., Choi, I., Kim, H., Lee, J., Choi, B., "Wet Cleaning by using Amphoteric Electrolyzed Water for Mask Cleaning", ECS trans. SCST16, Vol. 92(2), pp. 209-215, (2019). https://doi.org/10.1149/09202.0209ecst
  5. Buitrago, E., Fallica, R., Fan, D., Kulmana, T. S., Vokenhuber, M., Ekinci Y., "SnOx High-efficiency EUV Interference Lithography Gratings towards the Ultimate Resolution in Photolithography", Microelectronic Engineering, Vol. 155(4), pp.44-49, (2016). https://doi.org/10.1016/j.mee.2016.02.023
  6. Wikipedia, "Amphoterism", Dec.(2020).
  7. Lynnette, B., Acids and Bases, New York: Crabtree Pub., (2009).
  8. Wikipedia, "Glycine", Dec.(2020).
  9. Ito, H., "Chemically Amplified Resists: Past, Present, and Future", Proc. SPIE, Vol. 3678, pp.2-12, (1999).
  10. Li, L., Liu, X., Pal, S., Wang S., Ober, C. K., E. P., "Extreme Ultraviolet Resist Materials for Sub-7 nm Patterning", Chem. Soc. Rev., vol. 46, pp. 4855-4866, (2017). https://doi.org/10.1039/C7CS00080D
  11. Choi, J., Nho, Y. C., Hong, S. K., "Chemically Amplified Resist for Extreme UV Lithography", J. Korean Ind. Eng. Chem., vol. 17(2), pp. 158-162, (2006).
  12. Zou, Y., Zhang, Y. H., He, P. X., "Synthesis and Characterization of Amphoteric Polyacrylamide by Dispersion Polymerization in Aqueous Salts Solution", J. Designed Monomers and Polymers, vol. 16(6), pp. 592- 600, (2013). https://doi.org/10.1080/15685551.2013.771311
  13. Alfimov, A. V., Aryslanova, E. M., Chivilikhin, S. A., "Theoretical Study of the Amphoteric Oxide Nanoparticle Surface Charge during Multi-Particle Interactions in Aqueous Solution", J. of Physics: Conference Series, Article 643, pp. 1-6, (2015).
  14. Jailani, S., Franks, G. V., Healy, T. W., "Potential of Nanoparticle Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume Fraction", J. Am. Ceram. Soc., vol. 91(4), pp. 1141-1147, (2008). https://doi.org/10.1111/j.1551-2916.2008.02277.x
  15. Mikolajczyk, A., Gajewicz, A., Rasulev B., Schaeublin, N., Maurer-Gardner, E., Hussain, S., Leszczynski, J., Puzyn, T., "Zeta Potential for Metal Oxide Nanoparticles: A Predictive Model Developed by a Nano-Quantitative Structure-Property Relationship Approach", Chemistry of materials, American Chemical Society A, pp. 2400-2407, (2015).
  16. Palazhchenko, O., "Pourbaix Diagrams at Elevated Temperatures ~A Study of Zn and Sn~", Thesis of Master Degree, University of Ontario Institute of Technology, (2012)
  17. Graham Jr., S., Steinhaus, C. A., Clift, W. M., Klebanoff, L. E., Bajt, S., "Atomic Hydrogen Cleaning of EUV Multilayer Optics", Proc. SPIE., vol. 5037, pp. 236-248, (2003).
  18. Beckers, J., Ven, T., Horst, R., Astakhov, D., Banine V., "EUV-Induced Plasma : A Peculiar Phenomenon of a Modern Lithographic Technology", Appl. Sci., vol. 9, pp. 2827-2849, (2019). https://doi.org/10.3390/app9142827
  19. Ruzic, D., Lytle, W., Andruczyk, D., "EUV Mask Production and Cleaning", UIUC, 2011 Int. Workshop on EUV Lithography, EUV LITHO, Inc., P13, (2011).
  20. Hansson, B. A., Rymell, L., Berglund, M., Hemberg, O., Janin, E., Thoresen, J., Mosesson S., Wallin, J., Hertz, H. M., "Status of the Liquid-xenon-jet laser-plasma Source for EUV Lithography", Proc. SPIE., vol. 4688, pp. 102- 109, (2002).
  21. Wikipedia, "Self-ionization of water", Dec.(2020).
  22. Wikipedia, "Pourbaix diagram", Dec.(2020).
  23. Sharpe, R., "Analysis of the Relationship between Dissolved Molecular Hydrogen Gas, pH and ORP using the Nernst Equation", H2 Sciences Inc., ORP Page, pp. 1-22, (2017).
  24. Liu, Y., Ying, Y., Hua, X., Long, Y., "In-situ Discrimination of the Water Cluster Size Distribution in Aqueous Solution by TOF-SIMS", Science China Chemistry, vol. 61(2), pp. 159-163, (2018) https://doi.org/10.1007/s11426-017-9180-1
  25. Hassanali, A., Prakash, M. K., Eshet, H., Parrinello, M., "On the Recombination of Hydronium and Hydroxide Ions in Water", Proc. Natl. Acad. Sci. USA, vol. 108(51), pp. 20410-20415, (2011). https://doi.org/10.1073/pnas.1112486108
  26. Pyrgiotakisa, G., McDevitta, J., Bordinia, A., Diaza, E., Molinaa, R., Watsona, C., Deloida, G., Lenardb, S., Fixb, N., Mizuyamaa, Y., Yamauchic, T., Braina, J., Demokritou, P., "A Chemical Free, Nanotechnology-based Method for Airborne Bacterial Inactivation using Engineered Water Nanostructures", Environ. Sci. Nano., vol. 2014(1), pp. 15-26, (2014).
  27. Jeong, J. Choi, H., Park, K., Kim, H., Choi, J., Park, I., Lee, S. S., "Polymer Micro-Atomizer for Water Electrospray in the Cone-Jet Mode", Polymer, vol. 194, pp. 1-5, (2020).
  28. Yamaguchi, Y., Nakaoka, S., Hayashi, T., Kawakami, M., Yano, D., "Molecular Dynamics Analysis on the Behavior of Water and Alcohol Liquids on a OH-Terminated SiO2 Surface", ECS trans. SCST16, vol. 92(2), pp. 87-94, (2019).
  29. Tsuruta, L. R., Lessa, M. M., Carmona-Ribeiro, A. M., "Effect of Particle Size on Colloid Stability of Bilayer-covered Polystyrene Microspheres", J. Colloid and Interface Science, vol. 175(2), pp. 470-475, (1995). https://doi.org/10.1006/jcis.1995.1477
  30. Thorne, J. A. and Slaughter, H., "Liquid Water Cluster Sizes", Thermochimica Acta, vol. 3(3), pp. 181-188, (1972). https://doi.org/10.1016/0040-6031(72)85028-7
  31. Matheshwary, Patel, N., Sathyamurthy, N., Kulkarni, A. D., S. R. Gadre, S. R., "Structure and Stability of Water Clusters (H2O)n, n=8-20 : An Ab Initio Investigation", J. Phys. Chem. A, vol. 105, pp. 10525-10537, (2001). https://doi.org/10.1021/jp013141b
  32. Paul, J. B., Collier, C. P., SayKally, R. B., Sherer, J. J., O'Keefe, A., "A Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy", J. Phys. Chem. A, vol. 101, pp. 5211-5214, (1997). https://doi.org/10.1021/jp971216z