Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle

추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향

  • Jeon, Tae Jun (School of Mechanical Engineering, Kyungpook National University) ;
  • Park, Tae Seon (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2021.01.15
  • Accepted : 2021.03.01
  • Published : 2021.06.30


Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

추력이 최적화된 노즐의 초음속 유동장에 대한 노즐벽면각도의 영향이 수치해석적으로 조사되었다. 30톤급 로켓엔진의 연소기와 작동조건이 최적노즐형상을 조사하기 위하여 선택되었다. 연소생성물의 노즐유동은 케로신-액체산소의 이동평형계산에 의해서 구현되었다. 노즐벽면 각도의 변화는 내부충격파 및 2차 충격파의 발달형태를 다르게 유도하였다. 내부충격파가 노즐출구에서 특정위치에 있을 때 최적노즐이 얻어졌다. 최적노즐에 대한 노즐벽면 각도들은 충격파를 고려하지 않고 얻어진 최적노즐 형상과 매우 유사하게 얻어졌다.



  1. Ahlberg, J.H., Hamilton, S., Migdal, D. and Nilson, E.N., "Truncated Perfect Nozzles in Optimum Nozzle Design," ARS Journal, pp. 614-620, 1961.
  2. Rao, G.V.R., "Exhaust Nozzle Contour for Optimum Thrust," Jet Propulsion, Vol. 28, No. 6, pp. 372-382, 1958.
  3. Huzel, D.K. and Huang, D.H., "Modern Engineering for Design of Liquid-propellant Rocket Engines," Progress in Astronautics and Aeronautics, AIAA, Vol. 147, 1992.
  4. Hoffman, J.D., "Design of Compressed Truncated Perfect Nozzles," Jet Propulsion, Vol. 3, No. 2, pp. 150-156, 1987.
  5. Vuillermoz, P., Weiland, C., Hagemann, G., Aupoix, B., Grosdemange, H. and Bigert, M., "Nozzle Design and Optimization," AIAA paper, pp. 469-492, 2004.
  6. Cai, G., Fang, J., Xu, X. and Liu, M., "Performance Prediction and Optimization for Liquid Rocket Engine Nozzle," Aerospace Science and Technology, Vol. 11, pp. 155-162, 2007.
  7. Kim, I., Lee, J.W., Choi, M.K. and Kwon, S., "Optimum Nozzle Angle of a Micro Solid Propellant Thruster," Nanoscale and Microscale Thermophysical Engineering, Vol. 15, No. 3, pp. 165-178, 2011.
  8. Kim, S.K., Joh, M., Choi, H.S. and Park, T.S., "Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow," International Journal of Heat and Mass Transfer, Vol. 70, pp. 1066-1077, 2014.
  9. Kim, S.K., Moon, Y.W. and Park, T.S., "Development of Chemical Equilibrium CFD Code for Performance Prediction and Optimum Design of LRE Thrust Chamber," Journal of the Korean Society of Propulsion Engineers, Vol. 9, No. 1, pp. 1-8, 2005.
  10. Wang, Q.D., Fang, Y.M., Wang, F. and Li, X.Y. "Skeletal Mechanism Generation for High-temperature Oxidation of Kerosene Surrogates," Combustion and Flame, Vol. 159, pp. 91-102, 2012.
  11. ANSYS Fluent User Guide 13.0.
  12. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 6th ed., John Wiley & Sons Inc., New York, U.S.A., 1992.
  13. Ostlund, J. and Muhammad-Klingmann, B. "Supersonic Flow Separation with Application to Rocket Engine Nozzles," Applied Mechanics Reviews, Vol. 58, pp. 143-177, 2005.
  14. Reid, R.C., Prausnitz, J.M. and Poling, B.E., The Properties of Gases & Liquids, 4th ed., McGraw-Hill Book Company, New York, U.S.A., 1986.
  15. Rao, G.V.R., "Approximation of Optimum Thrust Nozzle Contour," ARS Joutrnal, Vol. 30, No. 6, pp. 561, 1960.