DOI QR코드

DOI QR Code

III-V/Si Optical Communication Laser Diode Technology

광통신 III-V/Si 레이저 다이오드 기술 동향

  • Published : 2021.06.01

Abstract

Two main technologies of III-V/Si laser diode for optical communication, direct epitaxial growth, and wafer bonding were studied. Until now, the wafer bonding has been vigorously studied and seems promising for the ideal III-V/Si laser. However, the wafer bonding process is still complicated and has a limit of mass production. The development of a concise and innovative integration method for silicon photonics is urgent. In the future, the demand for high-speed data processing and energy saving, as well as ultra-high density integration, will increase. Therefore, the study for the hetero-junction, which is that the III-V compound semiconductor is directly grown on Si semiconductor can overcome the current limitations and may be the goal for the ideal III-V/Si laser diode.

Keywords

Acknowledgement

이 논문은 한국전자통신연구원 기본 사업의 일환으로 수행되었음[21ZB1120, 3D 집적 광소수신기를 위한 III-V/Si 기반 광전소자 기술 개발].

References

  1. V. Joshkin et al., "Biaxial compression in GaAs thin films grown on Si," J. Cryst. Growth, vol. 147, 1995, pp. 13-18. https://doi.org/10.1016/0022-0248(94)00620-2
  2. P.J. Taylor et al., "Optoelectronic device performance on reduced threading dislocation density GaAs/Si," J. Appl. Phys., vol. 89, 2001, pp. 4365-4375. https://doi.org/10.1063/1.1347000
  3. K. Akahori et al., "Improvement of the MOCVD-grown InGaP-on-Si towards high-efficiency solar cell application," Solar Energy Mater. Solar Cells, vol. 60, 2001, pp. 593-598. https://doi.org/10.1016/S0927-0248(00)00244-0
  4. W.-Y. Uen et al., "Heteroepitaxial growth of GaAs on Si by MOVPE using a-GaAs/a-Si double buffer layers," J. Cryst. Growth, vol. 295, 2006, pp. 103-107. https://doi.org/10.1016/j.jcrysgro.2006.07.026
  5. K. Ma et al., "Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches," IEEE J. Quantum Electron., vol. 40, 2004, pp. 800-804. https://doi.org/10.1109/JQE.2004.828234
  6. J.W. Lee et al., "Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates," Appl. Phys. Lett., vol. 50, 1987, pp. 31-33. https://doi.org/10.1063/1.98117
  7. M. Yamaguchi et al., "Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates," Appl. Phys. Lett., vol. 54, 1989, pp. 24-26. https://doi.org/10.1063/1.100819
  8. M. Yamaguchi et al., "Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices," J. Mater. Res., vol. 6, 1991 pp. 376-384. https://doi.org/10.1557/JMR.1991.0376
  9. N. Havafuji et al., "Effectiveness of AlGaAs/GaAs superlattices in reducing dislocation density in GaAs on Si," J. Cryst. Growth, vol. 93, 1988, pp. 494-498. https://doi.org/10.1016/0022-0248(88)90572-6
  10. Y. Shi et al., "Optimization of the GaAs-on-Si substrate for microelectromechanical systems(MEMS) sensor application," Materials, vol. 5, pp. 2917-2926.
  11. B.L. Sharma and R.K. Purohit, "Characterization of the Grown Layers," in Semiconductor-heterojunctions, Pergamon Press, Oxford, UK, 1974, pp. 57-76.
  12. L. George et al., "Dislocation filters in GaAs on Si," Semicond. Sci. Techno., vol. 30, no. 11. 2015, 114004. https://doi.org/10.1088/0268-1242/30/11/114004
  13. M. Tang et al., "Optimizations of defect filter layer for 1.3-㎛ InAs/GaAs quantum-dot lasers monolithically grown on Si substrates," IEEE J. Quantum Electron., vol. 22, 2016, 1900207.
  14. Y.H. Ko et al., "High quality GaAs epitaxially grown on Si (001) substrate through AlAs nucleation and thermal cycle annealing," Solid State Electron., vol. 166, 2020, 107763. https://doi.org/10.1016/j.sse.2019.107763
  15. Y.H. Ko, K.J. Kim, and W.S. Han, "Monolithic growth of GaAs laser diodes on Si(001) by optimal AlAs nucleation with thermal cycle annealing," Optical Materials Express, vol. 11, no. 3, 2021, pp. 943-951. https://doi.org/10.1364/OME.411328
  16. J. Wang et al., "1.3㎛ InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers," Photonics Res., 2018, vol. 6, no. 4, pp. 321-325. https://doi.org/10.1364/PRJ.6.000321
  17. O. Abouzaid et al., "O-band emitting InAs quantum dots grown by MOCVD on a 300 mm Ge-buffered Si (001) substrate," Nanomaterials, 2020, vol. 10, no. 12, pp. 321-325. https://doi.org/10.3390/nano10020321
  18. J. Yang et al., "All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates," J. Phys. D: Appl. Phys., vol. 54, no. 3, 2021, 035103. https://doi.org/10.1088/1361-6463/abbb49
  19. A.Y. Liu et al., "Electrically pumped continuous-wave 1.3㎛ quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si," Optics Letters, vol. 42, 2017 pp. 338-341. https://doi.org/10.1364/OL.42.000338
  20. D.H. Jung et al., "High efficiency low threshold current 1.3㎛ InAs quantum dot lasers on on-axis (001) GaP/Si," Appl. Phys. Lett., vol. 111, 2017, 122107.
  21. B. Shi et al., "MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3㎛ quantum dot laser applications," Appl. Phys. Lett., vol. 114, 2019, 172102. https://doi.org/10.1063/1.5090437
  22. B. Shi et al., "Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon," Optica., vol. 6, 2019, 1507. https://doi.org/10.1364/OPTICA.6.001507
  23. S. Znu et al., "1.5 ㎛ quantum-dot diode lasers directly grown on CMOS-standard (001) silicon" Appl. Phys. Lett., vol. 113, 2018, 221103. https://doi.org/10.1063/1.5055803
  24. S. Zhu et al., "Room-temperature electrically-pumped 1.5㎛ InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si" Opt. Express, vol. 26, no. 11, 2018, pp. 14514-14523. https://doi.org/10.1364/OE.26.014514
  25. S. Zhu et al., "Parametric study of high-performance 1.55㎛ InAs quantum dot microdisk lasers on Si" Opt. Express, vol. 25, no. 25, 2017, pp. 31281-31293. https://doi.org/10.1364/OE.25.031281
  26. S. Chen et al., "Electrically pumped continuous-wave 1.3㎛ InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates," Opt. Express. vol. 25, 2017, 4632. https://doi.org/10.1364/OE.25.004632
  27. H. Park et al., "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express. vol. 13, 2005, pp. 9460-9464. https://doi.org/10.1364/OPEX.13.009460
  28. B. Bakir et al., "Electrically driven hybrid Si/III-V Fabry-Perot lasers based on adiabatic mode transformers," Opt. Express, vol. 19, 2011, pp. 10317-10325. https://doi.org/10.1364/OE.19.010317
  29. A.W. Fang et al., "A distributed bragg reflector silicon evanescent laser," IEEE Photonics Technol. Lett., vol. 20, 2008, pp. 1667-1669. https://doi.org/10.1109/LPT.2008.2003382
  30. A.W. Fang et al., "A distributed feedback silicon evanescent laser," Opt. Express, vol. 16, 2008, pp. 4413-4419. https://doi.org/10.1364/OE.16.004413
  31. D. Liang et al., "Hybrid silicon evanescent approach to optical interconnects," Appl. Phys. A, vol. 95, 2009, pp. 1045-1057. https://doi.org/10.1007/s00339-009-5118-1
  32. A. W. Fang et al., "A racetrack mode-locked silicon evanescent laser," Opt Express. vol. 16, 2008, pp. 1393-1398. https://doi.org/10.1364/OE.16.001393
  33. S. Stankovic et al., "1310-nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding," IEEE Photonics Technol. Lett., vol. 23, 2011, 2169397.
  34. S. Stankovic et al., "Hybrid III-V/Si distributed-feedback laser based on adhesive bonding" IEEE Photonics Technol. Lett., vol. 24, 2012, 2223666.
  35. K. Tanabe et al., "Electrically pumped 1.3 room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer," Opt. Express, vol. 18, 2010, pp. 10604-10608. https://doi.org/10.1364/OE.18.010604
  36. T. Hong et al., "A selective-area metal bonding InGaAsP-Si laser" IEEE Photonics Technol. Lett., vol. 22, 2010, pp. 1141-1143. https://doi.org/10.1109/LPT.2010.2050683
  37. K. Matsumoto et al., "Room-temperature operation of GaInAsP lasers epitaxially grown wafer-bonded InP/Si substrate," Phys. Status. Solidi A, vol. 215, no. 8, 2018.
  38. Y. Hu et al., "III/V-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template," Light: Sci. Appl., vol. 8, no. 93, 2019.
  39. S. Matsuo et al., "Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer," Opt. Express, vol. 22, no. 10, 2014.
  40. T. Aihara et al., "Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide," Opt. Express, vol. 27, no. 25, 2019.
  41. T. Fujii et al., "Multiwavelength membrane laser array using selective area growth on directly bonded SiO2/Si," Optica, vol. 7, no. 7, 2020.