DOI QR코드

DOI QR Code

Low-capacitance cascaded H-bridge STATCOM for full power operation

  • Yuan, Yalei (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhou, Juan (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhang, Yonglei (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Zhao, Xiangkun (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Xu, Gaoxiang (School of Electrical and Power Engineering, China University of Mining and Technology)
  • Received : 2021.04.26
  • Accepted : 2021.11.19
  • Published : 2022.02.20

Abstract

A cascaded H-bridge STATCOM requires large DC filter capacitors to suppress the low-frequency voltage fluctuation in each of the H-bridge cells. Keeping the voltage stress of power device unchanged, increasing the fluctuation of the DC-link voltage is a possible method to significantly reduce the required capacitance for a STATCOM. However, excessive voltage fluctuation greatly degrades the operating range of the inductive conditions. This paper proposes a universal capacitance design method that can significantly reduce the required capacitance when compared with the traditional design method. First, the inductance is constrained in the form normalized by the system impedance. Then a new analysis method between the DC-link capacitance and the operating range is introduced. Experiment results obtained on a low-power 5-level cascaded H-bridge STATCOM prototype are presented to validate the correctness of the proposed design method.

Keywords

Acknowledgement

This work was supported by Key Laboratory of Control of Power Transmission and Conversion (SJTU), Ministry of Education (Grant number: 2021AA03) and Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant number: KYCX19_2158).

References

  1. Akagi, H.: Multilevel converters: fundamental circuits and systems. Proc. IEEE 105(11), 2048-2065 (2017) https://doi.org/10.1109/JPROC.2017.2682105
  2. Shinde, O.K., Pulavarthi, V.B.: STATCOM converters and control: a review. In: International Conference on Data Management, Analytics and Innovation, pp. 145-151 (2017).
  3. Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441-1451 (2011) https://doi.org/10.1109/TIA.2011.2124436
  4. Nguyen, H.V., Lee, S., Lee, D.: Reduction of DC-link capacitance in single-phase non-isolated onboard battery chargers. J. Power Electron. 19(2), 394-402 (2019) https://doi.org/10.6113/JPE.2019.19.2.394
  5. Farivar, G., Townsend, C.D., Hredzak, B., Pou, J., Agelidis, V.G.: Low-capacitance cascaded H-bridge multilevel StatCom. IEEE Trans. Power Electron. 32(3), 1744-1754 (2017) https://doi.org/10.1109/TPEL.2016.2557351
  6. Sun, Y., Liu, Y., Su, M., Xiong, W., Yang, J.: Review of active power decoupling topologies in single-phase systems. IEEE Trans. Power Electron. 31(7), 4778-4794 (2016) https://doi.org/10.1109/TPEL.2015.2477882
  7. Wang, H., Zhu, G., Blaabjerg, F.: An overview of capacitive DC-links topology derivation and scalability analysis. IEEE Trans. Power Electron. 35(2), 1805-1829 (2020) https://doi.org/10.1109/tpel.2019.2920257
  8. Isobe, T., Shiojima, D., Kato, K., Hernandez, Y.R., Shimada, R.: Full-bridge reactive power compensator with minimized-equipped capacitor and its application to static Var compensator. IEEE Trans. Power Electron. 31(1), 224-234 (2016) https://doi.org/10.1109/TPEL.2015.2412954
  9. Liu, Y., Wang, X., Peng, F.Z.: An H-bridge-based single-phase VAr generator with minimum DC capacitance. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 2001-2014 (2018) https://doi.org/10.1109/jestpe.2018.2819999
  10. Townsend, C.D., Tafti, H.D., Farivar, G.G., Pou, J.: Analytic spectral analysis technique for converters operating with oscillatory DC-link voltage components. IEEE Trans. Power Electron. 35(12), 13540-13553 (2020) https://doi.org/10.1109/tpel.2020.2992257
  11. Tang, Y., Qin, Z., Blaabjerg, F., Loh, P.C.: A dual voltage control strategy for single-phase PWM converters with power decoupling function. IEEE Trans. Power Electron. 30(12), 7060-7071 (2015) https://doi.org/10.1109/TPEL.2014.2385032
  12. Farivar, G., Hredzak, B., Agelidis, V.G.: Reduced-capacitance thin-flm H-bridge multilevel STATCOM control utilizing an analytic filtering scheme. IEEE Trans. Ind. Electron. 62(10), 6457-6468 (2015) https://doi.org/10.1109/TIE.2015.2420675
  13. Rodriguez, E., Farivar, G., Beniwal, N., Townsend, C., Pou, J.: Closed-loop analytic filtering scheme of capacitor voltage ripple in multilevel cascaded H-bridge converters. IEEE Trans. Power Electron. 35(8), 8819-8832 (2020) https://doi.org/10.1109/tpel.2020.2966305
  14. Cheng, X., Lu, D., Hu, H.: The low DC-link capacitance design consideration for cascaded H-bridge STATCOM. In: Annual Conference of the IEEE Industrial Electronics Society, pp. 4338-4343 (2018).
  15. Farivar, G., Pou, J., Tripathi, A.: LC-StatCom with symmetrical I-V characteristic: total harmonic distortion study. In: 2017 Asian Conference on Energy, Power and Transportation Electrifcation, pp. 1-5 (2017).
  16. Ge, X., Gao, F.: Flexible third harmonic voltage control of low capacitance cascaded H-bridge STATCOM. IEEE Trans. Power Electron. 33(3), 1884-1889 (2018) https://doi.org/10.1109/TPEL.2017.2738778
  17. Rodriguez, E., Leyva, R., Liu, Q., Townsend, C.D., Farivar, G.G., Ceballos, S., Pou, J.: Enhancing inductive operation of low-capacitance cascaded H-bridge StatComs using optimal third-harmonic circulating current. IEEE Trans. Power Electron. 36(9), 10788-10800 (2021) https://doi.org/10.1109/TPEL.2021.3063608
  18. Farivar, G., Townsend, C.D., Hredzak, B., Pou, J., Agelidis, V.G.: Passive reactor compensated cascaded H-bridge multilevel LCStatCom. IEEE Trans. Power Electron. 32(11), 8338-8348 (2017) https://doi.org/10.1109/TPEL.2016.2641043
  19. Farivar, G., Townsend, C.D., Pou, J., Hredzak, B.: Low-capacitance StatCom with modular inductive filter. IEEE Trans. Power Electron. 34(4), 3192-3203 (2019) https://doi.org/10.1109/tpel.2018.2849104
  20. Lu, D., Wang, J., Yao, J., Wang, S., Zhu, J., Hu, H., Zhang, L.: Clustered voltage balancing mechanism and its control strategy for star-connected cascaded H-bridge STATCOM. IEEE Trans. Ind. Electron. 64(10), 7623-7633 (2017) https://doi.org/10.1109/TIE.2017.2694390
  21. Volke, A., Hornkamp, M.: IGBT modules: technologies, driver and application, 3rd edn. Infneon (2017)