DOI QR코드

DOI QR Code

The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold -

열화상 사진기로 열전도 현상을 시각화한 자료가 소집단 활동에서 초등학생에게 미치는 교육적 효과 - 금속이 차갑게 느껴지는 이유에 대한 정신모형 변화를 중심으로 -

  • Received : 2022.07.26
  • Accepted : 2022.08.22
  • Published : 2022.08.31

Abstract

This study aims to investigate the educational effects of the visualization of heat conduction using a thermal imaging camera on elementary school students through small group activities. It endeavors to explain the reason for why metal feels cold. The scholars conducted in-depth interviews before and after learning the unit "Temperature and Heat" for four students in fifth grade in Seoul. Recorded video and audio materials of the activities, their outputs, and journals of scholars were collected, reviewed, and analyzed. The result demonstrated that visualizing heat conduction using the thermal imaging camera aroused curiosity and provided an opportunity for sophisticated observation and integrated thinking. In addition, the visualization of the heat conduction phenomenon was used as the basis for interpretation and rebuttal for active communication during the small group activities of the students. Consequently, the students changed their non-scientific beliefs, refined their knowledge, and developed their mental models through a small group discussion based on a thermal image video.

본 연구는 '금속이 차갑게 느껴지는 이유'를 설명하는 소집단 활동 과정에서 열화상 사진기로 열전도 현상을 시각화한 자료가 초등학생에게 미치는 교육적 효과에 대해서 알아보고자 하였다. 연구를 위해 초등 5학년 4명을 대상으로 '온도와 열' 단원 학습 전후에 사전 사후 심층면담을 진행하였다. 또한 '금속이 차갑게 느껴지는 이유'를 설명하는 추가 차시 수업의 소집단 활동 과정에서 녹화 및 녹음 자료, 학생들의 활동지, 연구자의 연구일지 등을 수집하여, 비교⋅검토하였다. 연구 결과 열화상 사진기로 열전도 현상을 시각화한 자료는 호기심을 유발하고 정교한 관찰 및 통합적 사고의 기회를 제공하였다. 또한 열전도 현상을 시각화한 자료는 학생들의 소집단 활동 과정에서 활발한 의사소통을 위한 해석과 반박의 근거자료로 사용되었다. 학생들은 열화상 동영상 자료를 바탕으로 하는 소집단 토론 과정을 통해 비과학적 신념을 변화시키고 지식을 정교화하였으며 이를 바탕으로 각자의 정신모형을 발달시켰다.

Keywords

References

  1. 나지연, 송진웅(2012). 초등학생의 과학 담화에서 나타나는 몸짓의 유형과 특징. 초등과학교육, 31(4), 450-462.
  2. 문성숙, 권재술(2008). 개념구조를 이용한 인지갈등에 대한 새로운 논의. 한국과학교육학회지, 28(5), 359-382.
  3. 박명희, 박윤복, 권용주(2005). 초등학생의 어항 관찰활동에서 나타는 관찰의 유형과 그 변화. 초등과학교육, 10(2), 175-182.
  4. 박정우, 유준희(2018). 소리의 전달 모형구성 수업에서 나타난 개인모형 구성 단계 중 정보의 흐름과 모둠모형 구성의 유형. 한국과학교육학회지, 38(3), 393-405. https://doi.org/10.14697/JKASE.2018.38.3.393
  5. 안성국, 박일우(2018). 원형 캡 레이저포인터와 다색 LED 를 활용한 렌즈에 의한 빛의 굴절 실험 개발 및 적용. 현장과학교육, 12(2), 203-217. https://doi.org/10.15737/SSJ.12.2.201806.203
  6. 양찬호, 김수현, 조민진, 노태희(2016). 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징. 한국과학교육학회지, 36(3), 361-369. https://doi.org/10.14697/JKASE.2016.36.3.0361
  7. 유희원, 함동철, 차현정, 김민석, 김희백, 유준희, 박현주, 김찬종, 최승언(2012). 달의 위상 변화에 대한 과학적 모형 구성 수업에서 나타나는 과학 영재들의 모형 생성 및 발달 과정. 영재교육연구, 22(2), 291-315.
  8. 이가람, 박일우, 주은정(2020). 초등 저학년 학생들에게 과학 경험은 충분할까?: 초등 저학년 학생의 과학에 대한 인식과 과학 경험에 대한 사례 연구. 초등과학교육, 39(4), 475-493.
  9. 이경민(2016). 통찰 발생과정에 있어 막다른 골목과 재구조화의 기능에 대한 고찰. 창의력교육연구, 16(3), 1-15.
  10. 이선경(2015). 과학학습 개념변화. 서울: 서울대학교출판문화원.
  11. 이정희(2009). 근대과학에서 시각적 재현의 의미. 철학논총, 55, 299-322.
  12. 허민아, 오필석, 한문현(2019). 과학적 지식 탐색 과정에서 초등학생들의 인식적 정서와 이를 이끄는 인지적 평가 요인 탐색. 초등과학교육, 38(4), 496-509.
  13. Arnheim, R. (1974). Art and visual perception: A psychology of the creative eye. Berkley: Univ of California Press.
  14. Chiou, G. L., & Anderson, O. R. (2009). A study of undergraduate physics students' understanding of heat conduction based on mental model theory and an ontology-process analysis. Science Education, 94(5), 825-854. https://doi.org/10.1002/sce.20385
  15. Chiou, G. L. (2013). Reappraising the relationships between physics students' mental models and predictions: An example of heat convection. Physical Review Special Topics-Physics Education Research, 9(1), 1-15. https://doi.org/10.1103/PhysRevSTPER.9.010119
  16. Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212. https://doi.org/10.1080/02635140500266484
  17. Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091. https://doi.org/10.1002/sce.20164
  18. Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. CA, US: Sage publications.
  19. Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children's idea in science. Milton Keynes, England: Open University Press.
  20. Eden, C., Ackermann, F., & Cropper, S. (1992). The analysis of cause maps. Journal of Management Studies, 29(3), 309-324. https://doi.org/10.1111/j.1467-6486.1992.tb00667.x
  21. Eppler, M. J., & Burkhard, R. A. (2004). Knowledge Visualization: Towards a New Discipline and its Fields of Application, ICA Working Paper 2/2004, Institute for Corporate Communication, Universita della Svizzera italiana.
  22. Ezquerra, A., & Ezquerra-Romano, I. (2018). From Thermosensation to the Concepts of Heat and Temperature: A Possible Neuroscientific Component. Eurasia Journal of Mathematics, Science and Technology Education, 14(12).
  23. Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.
  24. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses. International Journal of Science Education, 20(1), 83-97. https://doi.org/10.1080/0950069980200106
  25. Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
  26. Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87. https://doi.org/10.1002/(SICI)1098-2736(199901)36:1<55::AID-TEA5>3.0.CO;2-P
  27. Hoffman, D. D. (2000). Visual intelligence: How we crea te wha t we see. NY: W.W. Norton & Company.
  28. Hynd, C., & Guzzetti, B. J. (1998). When knowledge contradicts intuition: Conceptual change. In C. Hynd (Eds.), Learning from text across conceptual domains (pp. 139-164). Mahwah, NJ: LEA.
  29. Jacobson, R. (1999). Information design. Boston, MA: MIT Press.
  30. Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. The journal of the Learning Sciences, 4(1), 39-103. https://doi.org/10.1207/s15327809jls0401_2
  31. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  32. Justi, R., & Van Driel, J. (2005). The development of science teachers' knowledge on models and modelling: Promoting, characterizing, and understanding the process. International Journal of Science Education, 27(5), 549-573. https://doi.org/10.1080/0950069042000323773
  33. Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226. https://doi.org/10.1016/S0959-4752(02)00021-X
  34. Lee, G. H., Shin, J. H., Park, J. Y., Song, S. H., Kim, Y. S., & Bao, L. (2005). An integrated theoretical structure of mental models: Toward understanding how students form their ideas about science. Journal of the Korean Association for Science Education, 25(6), 698-709.
  35. Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099-1126. https://doi.org/10.1080/09500690903253916
  36. Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64. https://doi.org/10.1037/0022-0663.88.1.64
  37. Mayer, R. E. (1999). The promise of educational psychology: Learning in the content areas (Vol. 1). Upper Saddle River, NJ: Prentice Hall.
  38. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. https://doi.org/10.1207/S15326985EP3801_6
  39. Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83(1), 33-54. https://doi.org/10.1002/(SICI)1098-237X(199901)83:1<33::AID-SCE2>3.0.CO;2-Z
  40. Mehrabian, A. (2009). Nonverbal communication, New Jersey: Aldine Transaction.
  41. Nisbett, R., & Ross, L. (1980). Human inference: Strategies and shortcomings of social judgment. Englewood cliffs, NJ: Prentice-Hall
  42. Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Advances in the Psychology of Thinking, 1, 1-44.
  43. Paivio, A. (1986). Mental representations: A dual-coding approach. NY: Oxford University Press.
  44. Rapp, D. N. (2005). Mental models: Theoretical issues for visualizations in science education. In J. K. Gilbert (Eds.), Visualization in science education (pp. 43-60). Netherlands: Springer.
  45. Roth, W. M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 977-1019. https://doi.org/10.1002/(SICI)1098-2736(199911)36:9<977::AID-TEA3>3.0.CO;2-V
  46. Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
  47. Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101-120. https://doi.org/10.1023/A:1013136727916
  48. Tomkins, S. P., & Tunnicliffe, S. D. (2001). Looking for ideas: observation, interpretation and hypothesismaking by 12-year-old pupils undertaking science investigations. International Journal of Science Education, 23(8), 791-813. https://doi.org/10.1080/09500690119322
  49. Toulmin, S. E. (2006). 논변의 사용(The Uses of Argumentation). (고현범.임건태 역). 서울: 고려대학교출판부. (원서 출판 2003).
  50. Van Helden, A. (1977). The invention of the telescope. Transactions of the American Philosophical Society, 67(4), 1-67. https://doi.org/10.2307/1006276
  51. Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. https://doi.org/10.1002/tea.20213
  52. Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18(1), 123-183. https://doi.org/10.1207/s15516709cog1801_4
  53. Vygotsky, L. (1978). Interaction between learning and development. Readings on the Development of Children, 23(3), 34-41.
  54. Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken, NJ: Wiley.