DOI QR코드

DOI QR Code

REPRESENTATIONS BY QUATERNARY QUADRATIC FORMS WITH COEFFICIENTS 1, 2, 11 AND 22

  • Bulent, Kokluce (The Institute for Computational and Experimental Research in Mathematics Brown University)
  • Received : 2022.01.27
  • Accepted : 2022.09.21
  • Published : 2023.01.31

Abstract

In this article, we find bases for the spaces of modular forms $M_2({\Gamma}_0(88),\;({\frac{d}{\cdot}}))$ for d = 1, 8, 44 and 88. We then derive formulas for the number of representations of a positive integer by the diagonal quaternary quadratic forms with coefficients 1, 2, 11 and 22.

Keywords

Acknowledgement

The author thanks the anonymous referee for reading the manuscript carefully and the editor and Fabien Clery for the helpful comments. This material is based upon a work supported by the Simons Foundation Institute Grant Award ID 507536 while the author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI.

References

  1. A. Alaca, Representations by quaternary quadratic forms with coefficients 1, 3, 5 or 15, Integers 18 (2018), Paper No. A12, 14 pp.
  2. A. Alaca, S. Alaca, and Z. S. Aygin, Theta products and eta quotients of level 24 and weight 2, Funct. Approx. Comment. Math. 57 (2017), no. 2, 205-234. https://doi.org/10.7169/facm/1628
  3. A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams, Nineteen quaternary quadratic forms, Acta Arith. 130 (2007), no. 3, 277-310. https://doi.org/10.4064/aa130-3-5
  4. A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams, The number of representations of a positive integer by certain quaternary quadratic forms, Int. J. Number Theory 5 (2009), no. 1, 13-40. https://doi.org/10.1142/S1793042109001943
  5. A. Alaca and J. Alanazi, Representations by quaternary quadratic forms with coefficients 1, 2, 7 or 14, Integers 16 (2016), Paper No. A55, 16 pp.
  6. A. Alaca and M. Altiary, Representations by quaternary quadratic forms with coefficients 1, 2, 5 or 10, Commun. Korean Math. Soc. 34 (2019), no. 1, 27-41. https://doi.org/10.4134/CKMS.c170468
  7. Z. S. Aygin, Representations by sextenary quadratic forms with coefficients 1, 2, 3 and 6 and on newforms in S30(24), χ), J. Number Theory 185 (2018), 434-448. https://doi.org/10.1016/j.jnt.2017.09.012
  8. B. C. Berndt, Number theory in the spirit of Ramanujan, Student Mathematical Library, 34, American Mathematical Society, Providence, RI, 2006. https://doi.org/10.1090/stml/034
  9. C. G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, in Gesammelte Werke, Erster Band (Chelsea Publishing Co., New York, 1969), pp. 49-239.
  10. L. J. P. Kilford, Modular Forms, Imperial College Press, London, 2008. https://doi.org/10.1142/p564
  11. G. Kohler, Eta products and theta series identities, Springer Monographs in Mathematics, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16152-0
  12. B. Kokluce, Representations by certain octonary quadratic forms with coefficients 1, 2, 5 and 10, Proc. Math. Sci. 132 (2022), 55. https://doi.org/10.1007/s12044-022-00700-8
  13. G. Ligozat, Courbes modulaires de genre 1, Supplement au Bull. Soc. Math. France, Tome 103, no. 3, Societe Mathematique de France, Paris, 1975.
  14. J. Liouville, Sur les deux formes x2 + y2 + 2(z2 + t2), J. Math. Pures Appl. 5 (1860), 269-272.
  15. J. Liouville, Sur les deux formes x2 + y2 + z2 + 2t2, x2 + 2(y2 + z2 + t2), J. Math. Pures Appl. 6 (1861), 225-230.
  16. M. Newman, Construction and application of a class of modular functions, Proc. Lond. Math. Soc. (3) 7 (1957), 334-350. https://doi.org/10.1112/plms/s3-7.1.334
  17. M. Newman, Construction and application of a class of modular functions. II, Proc. Lond. Math. Soc. (3) 9 (1959), 373-387. https://doi.org/10.1112/plms/s3-9.3.373
  18. W. Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, 79, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/gsm/079
  19. J. Sturm, On the congruence of modular forms, in Number theory (New York, 1984-1985), 275-280, Lecture Notes in Math., 1240, Springer, Berlin, 1987. https://doi.org/10.1007/BFb0072985
  20. The LMFDB Collaboration, The L-functions and modular forms database, [Online; accessed 10 March 2022]. https://www.lmfdb.org.
  21. K. S. Williams, Number theory in the spirit of Liouville, London Mathematical Society Student Texts, 76, Cambridge University Press, Cambridge, 2011.