DOI QR코드

DOI QR Code

선형시설물 공정관리 활용을 위한 선형공정표 활용 시스템 구축 방안

Application of Linear Schedule Chart for Schedule Management of Linear Construction Project

  • 이재희 (경상국립대학교 토목공학과) ;
  • 강효정 (경상국립대학교 토목공학과) ;
  • 강인석 (경상국립대학교 토목공학과)
  • Lee, Jaehee (Department of Civil Engineering, Gyeongsang National University) ;
  • Kang, Hyojeong (Department of Civil Engineering, Gyeongsang National University) ;
  • Kang, Leenseok (Department of Civil Engineering, ERI, Gyeongsang National University)
  • 투고 : 2022.09.07
  • 심사 : 2023.02.11
  • 발행 : 2023.03.31

초록

도로, 철도 등의 토목시설공사는 제한된 구역에서 공정이 반복적으로 진행되는 건축공사와 달리 수십 km의 수평적 작업공간에서 선형 형태로 공정이 진행되고, 개별 공정은 시점부터 종점까지 거리 단위를 갖는 측점(Station)번호로 관리되고 있다. 이러한 이유로 공정의 작업 위치정보가 주요 관리요소가 되고 있으므로, 일정 정보만을 표현하는 간트공정표기반의 공정관리 체계는 한계점을 가질 수 있다. 본 연구에서는 공정의 시작 및 종료일을 나타내는 일정정보와 시작 및 종료 거리를 나타내는 위치정보를 동시에 표현할 수 있는 선형공정표의 구성 방법론을 제시하고, 이에 근거한 선형공정표 생성 시스템을 개발한다. 연구에서 선형공정표의 좌표축은 X, Y축을 각각 거리와 일정 값으로 구성하였으며, 개별 공정은 작업 내용을 유추할 수 있는 심볼로 표현하여 단순 막대도표 방식 대비 공정표의 시인성을 높였다. 개발된 선형공정표 생성 시스템은 철도시설 교량공사의 실제 공정 데이터를 활용하여 실무적 활용성을 검토하였다.

Unlike building construction projects, where the activity is repeatedly carried out in a limited area, civil engineering projects such as roads and railroads are carried out in a linear type in a horizontal working space over several tens of kilometers. Each activity is managed with a station number that has a unit of distance from the starting point to the end point. For this reason, since the work location information of the activity is a major management factor, the Gantt chart system that expresses only schedule information may have limitations. In this study, authors propose a method for constructing a linear schedule chart that can simultaneously express schedule information indicating the start and finish dates and location information indicating the start and end positions of each activity, and develop a system for generating a linear schedule chart. In the study, the coordinate axes of the linear schedule chart consisted of distance and date values on the X and Y axes, respectively, and each activity was expressed as a symbol that can infer the type of work to increase the visibility of the linear schedule chart compared to the simple bar chart method. The linear schedule chart generation system was reviewed for practical applicability by utilizing the actual schedule data of bridge structures in a railroad project.

키워드

과제정보

본 연구는 2021년 국토교통과학기술진흥원 연구비 지원사업(21RBIM-B158176-02)으로 수행되었습니다.

참고문헌

  1. Amy, K., Wang, S., Medal, L., and Sadatsafavi, H. (2019). "Linear scheduling evaluation and best practices development: Phase l Report" WSDOT Research Report, Washington State Department of Transport.
  2. Eid, M., Elbeltagi, E., and El-Adaway, IH. (2019). "Multi-objective simultaneous optimization for linear projects scheduling." ASCE International Conference on Computing in Civil Engineering, pp. 561-568.
  3. Han, S.J., Kim, H.S., Park, S.M., and Kang, L.S. (2018). "Application of linear schedule chart by linking location information of construction project with horizontal work space." Journal of the Korean Society of Civil Engineers, 38(4), pp. 601-610.
  4. Jongeling, R., and Olofsson, T. (2007). "A method for planning of work-flow by combined use of location-based scheduling and 4D CAD." Automation in construction, 16(2), pp. 189-198. https://doi.org/10.1016/j.autcon.2006.04.001
  5. Lee, J.H., Park S.M., Kim, S.K., and Kang, L.S. (2022). "Linear 4D system using schedule-location charts for infrastructure projects." Automation in Construction, 141.
  6. Kim, W.J., and Jung, Y.S. (2011). "Effectiveness of linear scheduling method for nuclear power plant construction." Proceedings of the Korean Institute of Construction Engineering and Management, KICEM, pp. 149-150.
  7. Kenley, R., and Seppanen, O. (2009). "Location-based management of construction projects: Part of a new typology for project scheduling methodologies." Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 2563-2570.
  8. Lucko, G., and Gattei, G. (2016). "Line-of-balance against linear scheduling: critical comparison." Proceedings of the Institution of Civil Engineers-Management, Procurement and Law, 169(1), pp. 26-44. https://doi.org/10.1680/jmapl.15.00016
  9. Nazila, R.E., Paez, A., and Razavi, S. (2015). "Location-aware scheduling and control of linear projects:introducing space-time float prisms." Journal of Construction Engineering and Management, ASCE, 141(1), 0000916.
  10. Nazila, R.E., and Razavi, S. (2017). "Uncertainty-aware linear schedule optimization: a space-time constraint-satisfaction approach." Journal of Construction Engineering and Management, ASCE, 143(5), 0001276.
  11. Rezaei, A. (2015). "Location based scheduling in the form of flow line and its comparison to cpm-bar chart scheduling." International Journal of Electronics Mechanical and Mechatronics Engieering, 5(1), pp. 891-903. https://doi.org/10.17932/IAU.IJEMME.m.21460604.2015.5/1.891-903
  12. Ryu, H.G., and Jang, M.H. (2011). "Activity generating method for converting CPM schedule to linear schedule." Journal of the Architectural Institute of Korea Structure & Construction, 27(1), pp. 161-168.
  13. Shah, R.K. (2014). "A new approach for automation of location-based earthwork scheduling in road construction projects." Automation in Construction, 43, pp. 156-169. https://doi.org/10.1016/j.autcon.2014.03.003
  14. Shah, R.K. (2015). "Earthwork planning and visualisation of time-location information in road construction projects." Journal of Advanced College of Engineering and Management, 1(1), pp. 1-9.
  15. Tang, Y., Liu, R., and Sun, Q. (2014). "Schedule control model for linear projects based on linear scheduling method and constraint programming." Automation in Construction, 37, pp. 22-37. https://doi.org/10.1016/j.autcon.2013.09.008
  16. TiLOS (2022). https://tilosamericas.com, (accessed April. 2022).
  17. Vico office (2022). https://vicooffice.dk/en (accessed April. 2022).