DOI QR코드

DOI QR Code

Corrosion Failure Analysis of a Biogas Pipe

바이오가스 배관의 부식 파손 원인 분석

  • Min Ji Song (Department of Materials Science and Engineering, Chungnam National University) ;
  • Woo Cheol Kim (Plant Management & QC Division) ;
  • Heesan Kim (Department of Nanomaterials Engineering, Hongik University) ;
  • Jung-Gu Kim (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Soo Yeol Lee (Department of Materials Science and Engineering, Chungnam National University)
  • 송민지 (충남대학교 신소재공학과) ;
  • 김우철 (한국지역난방공사 플랜트기술처 플랜트관리.QC부) ;
  • 김희산 (홍익대학교 나노신소재학과) ;
  • 김정구 (성균관대학교 신소재공학부) ;
  • 이수열 (충남대학교 신소재공학과)
  • Received : 2023.05.14
  • Accepted : 2023.05.18
  • Published : 2023.05.30

Abstract

The use of biogas is an industrially necessary means to achieve resource circulation. However, since biogas obtained from waste frequently causes corrosion in pipes, it is important to elucidate corrosion mechanisms of the pipes used for biogas transportation. Recently, corrosion failure occurred in a pipe which supplied for the biogas at the speed of 12.5 m/s. Pinholes and pits were found in a straight line along the seamline of the pipe. By using corrosion-damaged samples, residual thickness, microstructure, and composition of oxide film and inclusion were examined to analyze the cause of the failure. It was revealed that the thickness reduction of biogas pipe was ~0.11 mm per year. A thin sulfuric acid film was formed on the surface of the interior of a pipe due to moisture and hydrogen sulfide contained in a biogas. Near the seamline, microstructure was heterogeneous and manganese sulfide (MnS) was found. Pits were generated by micro-galvanic corrosion between the manganese sulfide and the matrix in the interior of the pipe along the seamline. In addition, microcracks formed along the grain boundaries beneath the pits revealed that hydrogen-induced cracking (HIC) also contributed to accelerating the pitting corrosion.

Keywords

Acknowledgement

본 연구는 한국지역난방공사의 지원을 받아 연구를 수행하였습니다.

References

  1. 재단법인 한국경제행정연구원, (2022) "고양시 음식물류폐기물 발생억제 계획수립 연구보고서" pp. 20-26.
  2. K. Rokosz, T. Hryniewicz, and M. Kara : World scientific news, 74 (2017) 194.
  3. M. Fontenelle, H. J. Alves, M. R. Monteiro, S. M. Higa, C. A. D. Rovere, E. L. Pellizzer, and I. Fontenelle : Materials Research, 20 (2017) 725.
  4. J. K. Lee, J. Y. Lee, S. H. Lim, J. H. Park, B. M. Seo, and S. H. Kim : Corrosion Science and technology, 31(3) (2002) 234.
  5. M. Rahman, S. P. Murugan, C. Ji, J. Cheon, and Y. Park : Corrosion Science and Technology, 17(3) (2018) 109.
  6. Y. Kim, B. Lee : Journal of Welding and Joining, 22(5) (2004) 58.
  7. J. Lee, S. Han, K. Kim, H. Kim, and U. Lee : Engineering Failure Analysis, 34 (2013) 300. https://doi.org/10.1016/j.engfailanal.2013.08.005
  8. Rr. Maksuti : Internaional scientific journal of machines, technologies, materials, 10(5) (2016) 23.
  9. M. S. Joo, K. M. Noh, W. K. Kim, J. H. Bae, and C. S. Lee : Metallurgical and Materials Transactions E, 2(2) (2015) 119.
  10. Z. Chen, X. Chen, and T. Zhou : Metals, 7(4) (2017) 150.
  11. S. K. Dwiedi and M. Vishwakarma : International Journal of Hydrogen Energy, 44 (2018) 28007.
  12. H. J. Kim, Y. Park, and B. Y. Kang : Journal of the Korean Welding Society, 22(1) (2004).
  13. J. S. Park, J. W. Lee, and S. J. Kim : Materials, 14 (2021) 5282.
  14. J. Kraegeloh, C. Bosch, H. Brauer, and A. Kulgemeyer : Corrosion 2011. One Petro (2011).
  15. M. Gamil : Opportunities and Challenges, 1(2) (2004) 1534.
  16. C. Liu, H. Yuan, X. Li, Z. Che, S. Yang, and C. Du : Metals, 12(4) (2022) 587. https://doi.org/10.3390/met12040587
  17. W. Shi, S. Yang, A. Dong, and J. Li : JOM, 70(11) (2018) 2513.
  18. M. B. A. Deemantha and G. I. P. De Silva : Engineer, 55(01) (2022) 115.
  19. S. J. Lukezich : Final report. Southwest Research Institute (United States), (1998).
  20. J. Ha, K. Park, S. Park, and I. Sun : Journal of Applied Reliability, 15(3) (2015) 197.