DOI QR코드

DOI QR Code

A Study of the Design and Analysis of High Strength Composite Spoiler Applied to the Modified RTM Manufacturing Method

개선된 공법을 적용한 고강도 복합재 스포일러 설계 및 해석 연구

  • Yonggyu Lee (School of Mechanical Engineering, Kunsan National University) ;
  • Hyunbum Park (School of Mechanical Engineering, Kunsan National University)
  • 이용규 (군산대학교 기계공학부) ;
  • 박현범 (군산대학교 기계공학부)
  • Received : 2023.01.28
  • Accepted : 2023.03.13
  • Published : 2023.06.30

Abstract

In this study, the design of spoiler applied to composite material was performed. The GFRP composite was adopted. Aerodynamic design was performed by analyzing the aerodynamic load of the target structure. As the applied velocity conditions, a normal speed of 80 km/h and a maximum speed of 90 km/h were applied. The aerodynamic design results were verified through CFD analysis. Structural design and analysis were performed by investigation of the aerodynamic design results. A prototype was manufactured by reflecting the structural design results. The manufacturing method applied the improved RTM method. The validity of the design results was investigated through final test and evaluation.

본 연구에서 복합재료를 적용한 스포일러의 설계 연구를 수행하였다. 적용된 재료는 유리섬유 복합재료가 채택되었다 대상 구조물의 공력 하중을 분석하여 공력 설계를 수행하였다. 적용 속도 조건은 정상 속도 80km/h 속도와 최고 속도 90km/h가 적용되었다. 공력 설계 결과는 CFD 해석을 통해 검증하였다 공력 설계 결과를 검토하여 구조 설계 및 해석을 수행하였다 구조 설계 결과를 반영하여 시제품을 제작하였다. 제작 공법은 개선된 RTM 공법을 적용하였다. 최종 시험 평가를 통해 설계 결과의 타당성을 검증하였다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원과 2018년 정부 교육부의 재원으로 한국연구재단의 지원(No. 2018R1D1A1B07043553)을 받아 수행된 연구임 (P0012769, 2023년 산업혁신인재성장지원사업)

References

  1. C. H. Kim, C. B. Youn, "Aerodynamic effect of roof-fairing system on a Heavy-Duty Truck", International Journal of Automotive Technology, vol. 6, no. 3, pp. 221-227, 2005.
  2. Gilhaus. A. M. "The influence of cab shape on air drag of trucks." Journal of Wind Engineering and Industrial Aerodynamics, vol. 9, pp. 77-87, 1981. https://doi.org/10.1016/0167-6105(81)90079-9
  3. Garry, K. P. "Development of container-mounted devices for reducing the aerodynamic drag of commercial vehicles. Journal of Wind Engineering and Industrial Aerodynamics, vol. 9, pp. 113-124, 1981. https://doi.org/10.1016/0167-6105(81)90082-9
  4. M. S. Han, J. E. Cho, "Air resistance due to the deflector configuration of commonly used large trucks.", Journal of the Korean Society of Manufacturing Technology Engineers, vol. 23, pp. 138-144, 2014. https://doi.org/10.7735/ksmte.2014.23.2.138
  5. J. J. Kim, J. W. Hong, S. J. Lee, "Bio-inspired cab-roof fairing of heavy vehicles for enhancing drag reduction and driving stability." International Journal of Mechanical Sciences, vol. 131-132, pp. 868-879, 2017. https://doi.org/10.1016/j.ijmecsci.2017.08.010
  6. Y. Lee, H. Park, "Fairing Design of Commercial Vehicles for Drag Force Reduction", Journal of Aerospace System Engineering, vol. 16, no. 2, 25-32, 2022.
  7. ANSYS, ANSYS User's Manual Version 17.2, ANSYS lnc, 2016.
  8. ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.
  9. ASTM D790-17 Flexural Properties of Unreinforced and Reinforced Plastics.