DOI QR코드

DOI QR Code

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek (Korea Research Institute of Standards and Science) ;
  • Byung Gun Park (Korea Atomic Energy Research Institute) ;
  • Chaeho Shin (Korea Research Institute of Standards and Science) ;
  • Gwang Min Sun (Korea Atomic Energy Research Institute)
  • 투고 : 2023.01.02
  • 심사 : 2023.05.30
  • 발행 : 2023.09.25

초록

We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

키워드

과제정보

This work was supported by a National Research Council of Science and Technology (NST) grant from the Korean Government (MSIT) (C.Shin, No. CAP-18-04-KRISS), the National Research Foundation of Korea(NRF) grant from Korean government (MSIT) (C. Shin, No. NRF-2020M3H4A3081882, G.M. Sun, No.1711078081).

참고문헌

  1. Baliga B. J. "Power Semiconductor Devices," PWS Publishing Company, p 476.
  2. Baliga B. J. "The IGBT Device : Physics, Design and Applications of the Insulated Gate Bipolar Transistor".
  3. Noriyuki Iwamuro, Thomas Laska, "IGBT history, state-of-the-art, and future prospects.", in: IEEE Transactions on Electron Devices, 2017, pp. 741-752.
  4. Praveen M. Shenoy, Sampat Shekhawat, Bob Brockway, "Application specific 1200V planar and trench IGBTs.", in: Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC'06, IEEE, 2006.
  5. Malay Trivedi, S. Pendharkar, K. Shenai, "Switching characteristics of MCT's and IGBT's in power converters.", IEEE Trans. Electron. Dev. 43 (11) (1996), 1994-200.
  6. Sinsu Kyoung, Jung Eun Sik, Ey Goo Kang, "A study on characteristic improvement of IGBT with P-floating layer.", Int. J. Electr. Eng. Technol. 9 (2) (2014) 686-694. https://doi.org/10.5370/JEET.2014.9.2.686
  7. Ling-Ling Li, et al., "Renewable energy utilization method: a novel Insulated Gate Bipolar Transistor switching losses prediction model.", J. Clean. Prod. 176 (2018) 852-863. https://doi.org/10.1016/j.jclepro.2017.12.051
  8. Masakazu Nakabayashi, et al., "A study on radiation damage of IGBTs by 2-MeV electrons at different irradiation temperatures.", Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 219 (2004) 676-679. https://doi.org/10.1016/j.nimb.2004.01.141
  9. M. Saggio, et al., "Innovative localized lifetime control in high-speed IGBTs.", IEEE Electron. Device Lett. 18 (7) (1997) 333-335. https://doi.org/10.1109/55.596928
  10. Stephane Azzopardi, et al., Local lifetime control IGBT structures: turn-off performances comparison for hard-and soft-switching between 1200V trench and new planar PT-IGBTs, Microelectron. Reliab. 41 (9-10) (2001) 1731-1736. https://doi.org/10.1016/S0026-2714(01)00212-8
  11. X. Jorda, et al., "Electrical parameter variation of PT-IGBT by backside proton irradiation.", in: 2003 International Semiconductor Conference. CAS 2003 Proceedings (IEEE Cat. No. 03TH8676), vol. 2, IEEE, 2003.
  12. P.G. Fuochi, "Irradiation of power semiconductor devices by high energy electrons: the Italian experience.", Radiat. Phys. Chem. 44 (4) (1994) 431-440. https://doi.org/10.1016/0969-806X(94)90084-1
  13. Daniel M. Fleetwood, "Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices.", IEEE Trans. Nucl. Sci. 60 (3) (2013) 1706-1730. https://doi.org/10.1109/TNS.2013.2259260
  14. Timothy R. Oldham, F.B. McLean, "Total ionizing dose effects in MOS oxides and devices.", IEEE Trans. Nucl. Sci. 50 (3) (2003) 483-499. https://doi.org/10.1109/TNS.2003.812927
  15. J. Gasiot, "Radiation Effects on Devices: Total Ionizing Dose, Displacement Effect, Single Event effect.", CERN Training, 2000 available in ATLAS Radiation Hard Electronics Web Page.
  16. Marta Bagatin, Simone Gerardin, "Ionizing Radiation Effectsin Electronics.", 2016.
  17. Marian Badila, et al., "The electron irradiation effects on silicon gate dioxide used for power MOS devices.", Microelectron. Reliab. 41 (7) (2001) 1015-1018. https://doi.org/10.1016/S0026-2714(01)00060-9
  18. G. Schwarze, A. Frasca, Neutron, gamma ray and post-irradiation thermal annealing effects onpower semiconductor switches, Conf. Adv. SEI. Technol. (1991) 1-8.
  19. Lei Li, et al., "Experimental investigation on displacement damage effects of trench field-stop reverse-conducting insulated-gate bipolar transistor.", IEEE Trans. Nucl. Sci. 69 (9) (2022) 2065-2073. https://doi.org/10.1109/TNS.2022.3191355
  20. Sung Ho Ahn, Gwang Min Sun, Hani Baek, "Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor.", Nucl. Eng. Technol. 54 (2) (2022) 501-506. https://doi.org/10.1016/j.net.2021.11.009
  21. Xue Zhang, Hongxing Yu, Bangyang Xia, Wenjie Li, Xilin Zhang, " research on ultra high flux research reactor.", Proc. 23 rd. Pac. Basin. Nucl. Conf. 1 (2022) 887-897.
  22. I.O.P. Conf, Series: J. Phys. Conf. 1021 (2018), 012037.
  23. Ha Wi-Ho, Se-Young Park, Yoo Jaeryong, Seokwon Yoon, Seung-Sook Lee, Jungho Kim, Jong Kyung Kim, "Measurement of neutron spectra in MC50 cyclotron using Bonner sphere spectrometer with LiI scintillation detector", J. Radiat. Protect. Res 38 (3) (2013) 143-148. https://doi.org/10.14407/jrp.2013.38.3.143
  24. H.J. Barnaby, "Total-ionizing-dose effects in modern CMOS technologies.", IEEE Trans. Nucl. Sci. 53 (6) (2006) 3103-3121. https://doi.org/10.1109/TNS.2006.885952
  25. Pavel Hazdra, Stanislav Popelka, "Displacement damage and total ionisation dose effects on 4H-SiC power devices.", IET Power Electron. 12 (15) (2019) 3910-3918. https://doi.org/10.1049/iet-pel.2019.0049
  26. Shuai Yang, et al., "Infrared absorption spectrum studies of the VO defect in fast-neutron-irradiated Czochralski silicon.", J. Cryst. Growth 280 (1-2) (2005) 60-65. https://doi.org/10.1016/j.jcrysgro.2005.03.046
  27. H. Mizubayashi, S. Okuda, "Elastic after-effect studies of lattice defects in Mo after fast neutron irradiation at 5 K.", Radiat. Eff. 33 (4) (1977) 221-235. https://doi.org/10.1080/00337577708233111
  28. Shuai Yang, et al., "FTIR study on VO 2 defect in fast neutron irradiated czochralski silicon.", Acta Phys. Sin. 54 (5) (2005) 2256-2260. https://doi.org/10.7498/aps.54.2256
  29. M. Moll, et al., "Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy.", Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 388 (3) (1997) 335-339. https://doi.org/10.1016/S0168-9002(97)00003-X