DOI QR코드

DOI QR Code

고추 및 토마토 친환경 및 관행재배지에서 분리한 인체 유해세균의 항생제 저항성 평가

Evaluation of Antibiotics Resistance for Human-harmful Bacteria Isolated from Eco-friendly and Practical Cultivation Farms of Hot Pepper and Tomato

  • 이성희 (충청북도농업기술원 유기농업연구소) ;
  • 도지원 (충청북도농업기술원 유기농업연구소) ;
  • 김성겸 (충청북도농업기술원 유기농업연구소) ;
  • 오광교 (국립농업과학원 유해생물과) ;
  • 박재호 (충청북도농업기술원 유기농업연구소)
  • 투고 : 2023.10.10
  • 심사 : 2023.11.08
  • 발행 : 2023.11.30

초록

This study was conducted to monitor the antibiotics resistance of human-harmful bacteria isolated in the agricultural environment for hot peppers (Capsicum annuum) and tomato (Lycopersicon esculentum). As a result, we isolated 120 bacterial species (34 on fruits, 48 in soil, 21 in water, and 17 in manure), identified them with the 16S rRNA sequence, analyzed minimum inhibitory concentration (MIC) for 26 antibiotics using Sensititre ARIS Hi-Q system and then evaluated whether each bacterial genus acquired resistance for the tested antibiotics or not, according to the CLSI criteria. From difference in MIC between eco-friendly (EFM) and practical (PFM) cultivation farms, Klebsiella spp. isolated from EFM was resistant to ampicillin (AMP) and nalidixic acid (NAL), and that isolated from PFM was resistant to streptomycin (STR) and tetracycline (TET). Enterobacter spp. isolated from EFM was resistant to AMP and azithromycin (AZI), and that isolated from PFM was resistant to AMP, AZI, and STR. Meanwhile, Pseudomonas spp. isolated from EFM and PFM were all resistant to AMP, AZI, cefotaxime (FOT), cefoxitin (FOX), ceftriaxone (AXO), CHL, NAL, and STR. Staphylococcus spp. isolated from EFM and PFM were resistant to gentamycin (GEN), STR, and kanamycin (KAN), and in particular, that from EFM showed resistance for erythromycin (ERY). In conclusion, our study suggested that EFM lead STR antibiotics resistance for human-harmful bacteria to decrease, because only the bacteria isolated from hot pepper and tomato crop with PFM have showed resistance against STR antibiotics, regardless of bacterial genus.

키워드

과제정보

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: PJ01629806)의 지원으로 수행되었음.

참고문헌

  1. Breidenstein, E. B., C. de la Fuente-Nunez, and R. E. Hancock. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19: 419-426. https://doi.org/10.1016/j.tim.2011.04.005. 
  2. Centers for Disease Control and Prevention. 2021. List of selected multistate foodborne outbreak investigations. Available from: https://www.cdc.gov/foodsafety/outbreaks/multistateoutbreaks/outbreakslist.html Accessed Sep. 14. 
  3. Chang, S., D. M. Suvert, J. C. Hageman, M. L. Boulton, F. C. Tenover, and D. F. Pounch. 2003. Infection with vancomycin resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348: 1342-1347.  https://doi.org/10.1056/NEJMoa025025
  4. Cho, S. J., S. H. Jeong, Y. J. Seo, T. S. Kim, H. H. Lee, M. G. Lee, J. M. Seo, B. S. Cho, and J. B. Kim. 2020. Prevalence and toxin characteristics of Bacillus cereus isolated from vegetables in Gwangju metropolitan city. Korean J. Food Nutr. 33: 142-148. 
  5. CLSI (Clinical Laboratory Standards Institute). 2020. Performance Standards for Antimicrobial Susceptibility Testing, 30th edition CLSI supplement M100. Wayne, PA, USA. 
  6. Dixit, A., N. Kumar, S. Kumar, and V. Trigun. 2019. Antimicrobial resistance: progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med. 44: 4-8.  https://doi.org/10.4103/ijcm.IJCM_217_18
  7. Franz, E., A. A. Visser, A. D. van Diepeningen, M. M. Klerks, J. Termorshuizen, and A. H. C. van Bruggen. 2007. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 24: 106-112.  https://doi.org/10.1016/j.fm.2006.03.002
  8. Hancock, R. E. 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfer-mentative Gram-negative bacteria. Clinical Infectious Diseases 27 (Suppl 1): S93-S99. https:// doi.org/10.1086/514909. 
  9. Hora, R., K. Warriner, B. J. Shelp, and M. W. Griffiths. 2005. Internalization of Escherichia coli O157:H7 following biological and mechanical disruption of growing spinach plants. J. Food Prot. 68: 2506-2509.  https://doi.org/10.4315/0362-028X-68.12.2506
  10. Jeong, B. R., S. M. Seo, H. J. Jeon, E. J. Roh, S. R. Kim, T. Lee, J. G. Ryu, K. Y. Ryu, and K. S. Jung. 2018. Evaluation on microbial contamination in red pepper and red pepper cultivated soil in Korea. J. Food Hyg. Saf. 33: 347-353.  https://doi.org/10.13103/JFHS.2018.33.5.347
  11. Jones, R. N., N. M. Holliday, and P. R. Rhomberg. 2015. Validation of a commercial dry form broth microdilution device (sensititre) for testing tedizolid, a new oxazolidinone. J. Clin. Microbiol. 53(2): 657-659.  https://doi.org/10.1128/JCM.02769-14
  12. Jung. K. S., E. J. Roh, K. Y. Ryu, W. I. Kim, K. H. Park, D. H. Lee, K. H. Kim, J. C. Yun, and S. G. Heu. 2012. Monitoring of pathogenic bacteria in organic vegetables from Korean market. Korean J. Soil Sci. Fert. 45: 560-564.  https://doi.org/10.7745/KJSSF.2012.45.4.560
  13. Kim, D. W., N. Y. S. Kim, C. R. Kim, M.-I. Jeong, K. K. Oh, B.-E. Kim, J.-G. Ryu, J. E. Jung, S. N. Jee, and K.-Y. Ryu. 2021. Investigation of Antimicrobial Minimum Inhibitory Concentration of Pectobacterium spp. Isolated from Agricultural Produce. Korean J. Pestic. Sci. 25(4): 1-10.  https://doi.org/10.7585/kjps.2021.25.1.1
  14. Kim, J. H., D. V. Lee, M.G. Lee, K. Y. Ryu., T. S. Kim, G. R. Gang., K. W. Seo, and J. B. Kim. 2019a. Monitoring and risk assessment of pesticide residues in school foodservice agricultural products in Gwangju metropolitan area. J. Food Hyg. Saf. 34: 283-289.  https://doi.org/10.13103/JFHS.2019.34.3.283
  15. Kim, J.-Y., K.-H. Baek, S.-Y. Lee. 2023. Evaluation of Resistance of Phytopathogenic Bacteria to Agricultural Antibiotics. Res. Plant Dis. 29(2): 168-173.  https://doi.org/10.5423/RPD.2023.29.2.168
  16. Kim, S. H., K. I. Lee, S. Y. Heo, and W. J. Lee. 2019b. Research on fresh-cut fruits and vegetables. Korea Rural Economic Institute: 256p. 
  17. Kim, S. H., J. H. Ryu, M. S. Kim, and H. J. Choi. 2006. The risk factors and prognosis of methicillin-resistant Staphylococcus aureus bacteremia: focus on nosocomial acquisition. Korean J. Med. 71: 405-414. 
  18. Kim, S. R., M. H. Cha, D. K. Chung, and W. B. Shim, 2015. Profile of toxin genes and antibiotic susceptibility of Staphylococcus aureus isolated from perilla leaf cultivation area. J. Fd. Hyg. Safety 30(1): 51-58.  https://doi.org/10.13103/JFHS.2015.30.1.51
  19. Kim W. I., M. G. Gwak, A. R. Jo, S. D. Ryu, S. R. Kim, S. H. Ryu, H. Y. Kim, and J. G. Ryu. 2017. Investigation of microbiological safety of on-farm produce in Korea. J. Food Hyg. Saf. 32: 20-26.  https://doi.org/10.13103/JFHS.2017.32.1.20
  20. Klerks, M. M., E. Franz, M. van Gent-Pelzer, C. Zijlstra, and A. H. C. van Bruggen. 2007. Differential interaction of Salmonella enterica serovars with lettuce cultivars and plantmicrobe factors influencing the colonization efficiency. ISME J., 1: 620-631.  https://doi.org/10.1038/ismej.2007.82
  21. Kurenbach, B., A. M. Hill, W. Godsoe, S. Van Hamelsveld. and J. A. Heinemann. 2018. Agrichemicals and antibiotics in combination increase antibiotic resistance evolution. PeerJ 6: e5801. 
  22. Lee, M. N. 2021. A study on eco-friendly food consumption value and purchasing behavior-Comparative analysis according to the level of involvement-. Food-Service Industry Journal 17: 305-319. 
  23. Lee, Y. S., G. H. Kim, Y. R. Song, C. S. Oh, Y. J. Koh, and J. S. Jung. 2020. Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 26(1): 44-47.  https://doi.org/10.5423/RPD.2020.26.1.44
  24. Louvado, A., F. J. R. C. Coelho, P. Domingues, A. L. Santos, N. C. M. Gomes, A. Almeida, and A. Cunha. 2012. Isolation of surfactant-resistant pseudomonads from the estuarine surface microlayer. J. Microbiol. Biotechnol. 22: 283-291.  https://doi.org/10.4014/jmb.1110.10041
  25. Lupo, A., M. Haenni, and J. Y. Madec. 2018. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectrum 6(3): ARBA-0007-2017. 
  26. Ministry of Food and Drug Safety. 2017. Report of pathogen outbreak of Mexican red pepper contaminated with Salmonella spp. in USA. Available from: https://impfood.mfds.go.kr/CFCAA01F02/getCntntsDetail?cntntsSn=254613 
  27. Pantosti, A., A. sanchini, and M. Monaco. 2007. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2(3): 323-334.  https://doi.org/10.2217/17460913.2.3.323
  28. Park, B. K., S. H. Kwon, M. S. Yeom, S. Y. Han, M. J. Kang, S. J. Seo, K. S. Joo, and M. J. Heo. 2021. Monitoring and risk assessment of pesticide residues in school foodservice agricultural products in Incheon. Korean J. Food Sci. Technol. 53: 470-478. 
  29. Park, S. B. and S. C. Kwon. 2015. Microbiological hazard analysis for HACCP system application to red pepper powder. J. Korea Acad.-Ind. Co. Soc. 16: 2602-2608.  https://doi.org/10.5762/KAIS.2015.16.4.2602
  30. Park, W. J., H. Y. Ryu, G. Y. Lim, Y. D. Lee, and J. H. Park 2014. Microbial prevalence and quality of organic farm produce from various production sites. Korean J. Food Sci. Technol. 46: 262-267.  https://doi.org/10.9721/KJFST.2014.46.2.262
  31. Poole, K. 2012. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67: 2069-2089.  https://doi.org/10.1093/jac/dks196
  32. RDA (Rural Development Administration). 2022. Agricultural Antibiotics Susceptibility Test Manual. 47 pp. 
  33. Seo, U. H., H. J. Kang, K. B. Yoon, Y. J. An, and J. B. Kim. 2019. Analysis of dietary fiber, mineral content and fatty acid composition in Cheonggak (Codium fragile). Korean J. Food Nutr. 32: 328-334. 
  34. Serwecinska, L. 2020. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12: 3313. 
  35. Sharma, M., D. T. Ingram, J. R. Patel, P. D. Millner, X. Wang, A. E. Hull, and M. S. Donnenberg. 2009. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic medium. J. Food Prot. 72: 1513-1520.  https://doi.org/10.4315/0362-028X-72.7.1513
  36. Srichamnong, W., N. Kalambaheti, S. Woskie, P. Kongtip, J. Sirivarasai, and K. R. Matthews. 2021. Occurrence of antibiotic-resistant bacteria on hydroponically grown butterhead lettuce (Lactuca ativa var. capitata). Food Sci. Nutr. 9: 1460-1470.  https://doi.org/10.1002/fsn3.2116
  37. Wright, K. M., L. Crozier, J. Marshall, B. Merget, A. Holmes, and N. J. Holden. 2017. Difference in internalization and growth of Escherichia coli 0157:H7 within the apoplast of edible plants spinach and lettuce, compared with the model species Nicotiana benthamiana. Microb. Biotechnol. 10: 555-569.  https://doi.org/10.1111/1751-7915.12596
  38. Yeni, F., S. Yavas, H. Alpas, and Y. Soyer. 2016. Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreak. Crit. Riv. Food Sci. 56: 1532-1544.  https://doi.org/10.1080/10408398.2013.777021
  39. Zhou, C. and Y. Wang. 2020. Structure-activity relationship of cationic surfactants as antimicrobial agents. Curr. Opin. Colloid Interface Sci. 45: 28-43. https://doi.org/10.1016/j.cocis.2019.11.009