DOI QR코드

DOI QR Code

Solid media based on Monochamus alternatus to growth and physiologically active substance of Paecilomyces tenuipes fruiting bodies

  • Si Young Ha (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Woo Seok Lim (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Hyeon Cheol Kim (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Ji Young Jung (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Jae-Kyung Yang (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University)
  • 투고 : 2024.02.21
  • 심사 : 2024.03.25
  • 발행 : 2024.03.31

초록

Paecilomyces tenuipes (P. tenuipes) is a fungus cultivated artificially by South Korean researchers, utilizing rice bran as its substrate. The increased demand for this fungus has not been met with successful cultivation methods for fruiting body production in natural environments. Therefore, we tested the effect on the growth of P. tenuipes using a Solid media based on pests. In this results, the Solid media based on M.alternatus was effective in increasing the growth of P. tenuipes and the content of cordycepin. Moreover, we confirmed the conditions for manufacturing a Solid media based on M.alternatus for P. tenuipes growth. We suggested that the growth-promoting compounds offers valuable insights for optimizing fungal cultivation conditions, thereby enhancing productivity and contributing to a broader understanding of fungal physiology in varying nutritional environments.

키워드

과제정보

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2023478B10-2425-BC0361382116530002")' provided by Korea Forest Service (Korea Forestry Promotion Institute).

참고문헌

  1. Akbulut S, Stamps WT. 2012. Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. Forest Pathology, 42(2), 89-99. https://doi.org/10.1111/j.1439-0329.2011.00733.x
  2. Bae JT, Sinha J, Park JP, Song CH, Yun JW. 2000. Optimazation of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica. Journal of microbiology and Biotechnology, 10(4), 482-487.
  3. Cabanillas E, Barker K. 1989. Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. Journal of Nematology, 21(1), 115.
  4. Chang SH, Hsi HY, Leu JY, Lee TH. 2022. Cereal-based solid-state fermentation and anti-inflammatory potential of Paecilomyces cicadae SH1 (Ascomycota) isolated in China. International Journal of Medicinal Mushrooms, 24.
  5. Chioza A, Ohga S. 2013. Mycelial growth of Paecilomyces hepiali in various agar media and yield of fruit bodies in rice based media. Advances in Microbiology, 2013.
  6. Dong C, Guo S, Wang W, Liu X. 2015. Cordyceps industry in China. Mycology, 6(2), 121-129. https://doi.org/10.1080/21501203.2015.1043967
  7. Dong Y, Xie P, Zheng K, Gu Y, Fan J. 2023. Teflon Coating and Anti-Escape Ring Improve Trapping Efficiency of the Longhorn Beetle, Monochamus alternatus. Applied Sciences, 13(3), 1664.
  8. Du L, Song J, Wang H, Li P, Yang ZZ, Meng LJ, Teng LR. 2012. Optimization of the fermentation medium for Paecilomyces tenuipes N45 using statistical approach. African Journal of Microbiology Research, 6(32), 6130-6141.
  9. Feng YJ, Zhu Y, Li YM, Li J, Sun YF, Shen HT, Zhu JB. 2018. Effect of strain separated parts, solid-state substrates and light condition on yield and bioactive compounds of Cordyceps militaris fruiting bodies. CyTA-Journal of Food, 16(1), 916-922. https://doi.org/10.1080/19476337.2018.1498130
  10. Ghatnur SM, Parvatam G, Balaraman M. 2015. Culture conditions for production of biomass, adenosine, and cordycepin from Cordyceps sinensis CS1197: Optimization by desirability function method. Pharmacognosy Magazine, 11(Suppl 3), S448.
  11. Ha SY, Jung JY, Lee DH, Yang JK. 2021. Optimization of medium components and incubation time for the production of Paecilomyces tenuipes mycelia in submerged culture. Journal of Mushroom, 19(1), 1-8.
  12. Ha SY, Jung JY, Yang JK. 2021. Optimization of Monochamus alternatus media and culture period for cordycepin production in Cordyceps militaris culture using solid-state fermentation. Journal of Mushroom, 19(3), 126-133. https://doi.org/10.14480/JM.2021.19.3.126
  13. Ha SY, Jung JY, Yang JK. 2022. Optimization of a solid culture medium based on Monochamus alternatus for Cordyceps militaris fruiting body formation. Letters in Applied Microbiology, 74(2), 185-193.
  14. Hajek AE, St. Leger RJ. 1994. Interactions between fungal pathogens and insect hosts. Annual review of entomology, 39(1), 293-322. https://doi.org/10.1146/annurev.en.39.010194.001453
  15. He BL, Zheng QW, Guo LQ, Huang JY, Yun F, Huang SS, Lin JF. 2020. Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. International journal of biological macromolecules, 145, 11-20. https://doi.org/10.1016/j.ijbiomac.2019.12.115
  16. Hong IP, Kang PD, Kim KY, Nam SH, Lee MY, Choi YS, Humber RA. 2010. Fruit body formation on silkworm by Cordyceps militaris. Mycobiology, 38(2), 128.
  17. Hong IP, Nam SH, Sung GB, Lee KG, Cho SM, Seok SJ, Guo SX. 2009. Chemical composition of main Cordyceps species in Korea. International Journal of Industrial Entomology, 18(1), 13-17.
  18. Hong IP, Nam SH., Sung GB, Chung IM, Hur H, Lee MW, Guo SX. 2007. Chemical components of Paecilomyces tenuipes (Peck) samson. Mycobiology, 35(4), 215-218. https://doi.org/10.4489/MYCO.2007.35.4.215
  19. Huang BM, Hsu CC, Tsai SJ, Sheu CC, Leu SF. 2001. Effects of Cordyceps sinensis on testosterone production in normal mouse Leydig cells. Life Sciences, 69(22), 2593-2602. https://doi.org/10.1016/S0024-3205(01)01339-X
  20. Ibrahim YB, Low W. 1993. Potential of mass-production and field efficacy of isolates of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus against Plutella xylostella. International Journal of Pest Management, 39(3), 288-292.
  21. Jo YY, Kweon H, Lee KG, Kim HB, Kim KY. 2015. Effect of silkworm varieties on Paecilomyces tenuipes culture. Journal of Sericultural and Entomological Science, 53(2), 87-91. https://doi.org/10.7852/jses.2015.53.2.87
  22. Kiewnick S. 2006. Effect of temperature on growth, germination, germ-tube extension and survival of Paecilomyces lilacinus strain 251. Biocontrol Science and Technology, 16(5), 535-546. https://doi.org/10.1080/09583150500532766
  23. Kim JC, Lee SJ, Kim S, Lee MR, Baek S, Park SE, Kim JS. 2020. Management of pine wilt disease vectoring Monochamus alternatus adults using spray and soil application of Metarhizium anisopliae JEF isolates. Journal of Asia-Pacific Entomology, 23(1), 224-233.
  24. Li X, Liu Q, Li W, Li Q, Qian Z, Liu X, Dong C. 2019. A breakthrough in the artificial cultivation of Chinese Cordyceps on a large-scale and its impact on science, the economy, and industry. Critical reviews in biotechnology, 39(2), 181-191. https://doi.org/10.1080/07388551.2018.1531820
  25. Li XQ, Xu K, Liu XM, Zhang P. 2020. A systematic review on secondary metabolites of Paecilomyces species: chemical diversity and biological activity. Planta Medica, 86(12), 805-821. https://doi.org/10.1055/a-1196-1906
  26. Lu RL, Luo FF, Hu FL, Huang B, Li CR, Bao GH. 2013. Identification and production of a novel natural pigment, cordycepoid A, from Cordyceps bifusispora. Applied microbiology and biotechnology, 97, 6241-6249.
  27. Lysakowska P, Sobota A, Wirkijowska A. 2023. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production-A Review. Molecules, 28(14), 5393.
  28. Miller JH. 1949. A revision of the classification of the Ascomycetes with special emphasis on the Pyrenomycetes. Mycologia, 41(2), 99-127. https://doi.org/10.1080/00275514.1949.12017755
  29. Nakamura K, Shinozuka K, Yoshikawa N. 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. Journal of pharmacological sciences, 127(1), 53-56. https://doi.org/10.1016/j.jphs.2014.09.001
  30. Nam KS, Jo YS, Kim YH, Hyun JW, Kim HW. 2001. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life sciences, 69(2), 229-237. https://doi.org/10.1016/S0024-3205(01)01125-0
  31. Pradhan P, De J, Acharya K. 2024. Strategies in Artificial Cultivation of Two Entomopathogenic Fungi Cordyceps militaris and Ophiocordyceps sinensis. In Applied Mycology for Agriculture and Foods (pp. 315-345). Apple Academic Press.
  32. Qian GM, Pan GF, Guo JY. 2012. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Natural Product Research, 26(24), 2358-2362.
  33. Raethong N, Wang H, Nielsen J, Vongsangnak W. 2020. Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Computational and structural biotechnology journal, 18, 1-8. https://doi.org/10.1016/j.csbj.2019.11.003
  34. Sharma A, Sharma S, Mittal A, Naik SN. 2014. Statistical optimization of growth media for Paecilomyces lilacinus 6029 using non-edible oil cakes. Annals of Microbiology, 64(2), 515-520. https://doi.org/10.1007/s13213-013-0683-0
  35. Singpoonga N, Sang-On B, Chaiprasart P. 2018. Effects of culture periods on fruiting body formation and bioactive compounds production of Cordyceps militaris. In XXX International Horticultural Congress IHC2018: International Symposium on Medicinal and Aromatic Plants, Culinary Herbs and 1287 (pp. 345-352).
  36. Sun H, Hu T, Guo Y, Liang Y. 2018. Preservation affects the vegetative growth and fruiting body production of Cordyceps militaris. World Journal of Microbiology and Biotechnology, 34, 1-9. https://doi.org/10.1007/s11274-017-2385-4
  37. Wang Y, Yang Z, Bao D, Li B, Yin X, Wu Y, Zou G. 2021. Improving hypoxia adaption causes distinct effects on growth and bioactive compounds synthesis in an entomopathogenic fungus Cordyceps militaris. Frontiers in Microbiology, 12, 698436.
  38. Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. 2024. A review on polysaccharide biosynthesis in Cordyceps militaris. International Journal of Biological Macromolecules, 129336.
  39. Xiao JH, Xiao Y, Liu JW, Wan WH, Fang N, Tan BB, Liu AY. 2004. Optimization of submerged culture conditions for mycelial polysaccharide production in Cordyceps pruinosa. Process Biochemistry, 39(12), 2241-2247. https://doi.org/10.1016/j.procbio.2003.11.026
  40. Yang ML, Kuo PC, Hwang TL, Wu TS. 2011. Anti-inflammatory principles from Cordyceps sinensis. Journal of Natural Products, 74(9), 1996-2000.
  41. Yu J, Sun M, Wang X, Qi D, Han C. 2023. Poly-pathways metabolomics for high-yielding cordycepin of Cordyceps militaris. Biomedical Chromatography, 37(2), e5551.
  42. Zhong JJ, Xiao JH. 2009. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Biotechnology in China I: from bioreaction to bioseparation and bioremediation, 79-150.