MR(Model Reduction) is presented in order to estimate the frequency of multiple sinusoids from the finite noisy data with the white or colored noises. MR, using the reduced rank models, is designed, appling the approximation of linear system to LP(Linear Prediction). The MR method is analyzed. Monte-carlo simulations are conducted for MR and Lp. The results are compared with in terms of mean, root-mean square and relative bias. MR eliminates effectevely the extremeous and exceptional poles appearing in LP and improves the accuracy of LP. Especially, MR gives promising results in short noisy measurements, low SNR's and colored noises. Power spectral density and angular frequency position are showed by figures, for examples. Finally, the new method is utilized to the communication and biomedical systems estimating the characteristics of the signal and the system identification modelling the dynamic systems from experimental data.