In this paper, we propose a stroke matching method for the off-line recognition of handprinted Hangul. In this method, the preprocessing steps such as position normalization, contour tracing and thinning are carried out first. Then, after extracting features such as the firection component distribution of contour, the direction component distribution of skeleton, and the distribution of structural feature points, strokes are extracted and matched based on the midpont distribution of the direction and the length of each stroke. In order to reduce the recognition time, a preliminary classification based on the direction component distribution features of the contour is performed. In order to domonstrate the performance of the proposed method, experiments with 520 most frequently used Hangul were performed, and 90.7% of correct recognition rate and 0.46second of recognition time per one character has been obtained. This results reveal that the proposed method can absorb effectively the noise in input character and the variations of stroke slant.