최근 시스템 반도체 발전으로 인하여 자동차 산업의 전장(電裝)에 대한 기술혁신이 빠르게 진행되고 있다. 특히, 자동차의 전장화는 자동차 부품업체들의 기술개발 경쟁을 가속화시키고 있으며, 개발 주기 또한 빠르게 변화하고 있다. 이러한 변화로 인하여 연구개발에 대한 전략과 기획의 중요성은 더욱 강화되고 있다. 자동차 산업의 패러다임 변화로 인하여, 연구개발 전략 중의 하나인 제품-기술로드맵(P/TRM)은 기획 단계에서 기술예측, 기업의 기술수준평가, 기술획득방법(Make/Collaborate/Buy) 등의 분석을 통하여 개발이 이루어져야 한다. 제품-기술로드맵은 제품과 기술의 고객 니즈를 파악하고 기술의 선정, 개발방향을 설정하는 툴(Tool)로써, 미래의 발전방향 추세를 예측하고 매크로(Macro) 트랜드의 전략적 방향성과 목표를 설정하는데 사용된다. 하지만, 대부분의 기업에서는 해당 기술의 논문이나 특허 분석, 전문가 델파이에 주로 의존하는 정성적인 방법을 통하여 제품-기술로드맵을 개발하고 있다. 본 연구는 가트너의 하이프 사이클과 누적이동평균 기반 데이터 전처리, 딥러닝(LSTM) 시계열 분석 기법을 융합하여 자동차 산업 중심으로 제품-기술로드맵을 보완하고 강화시킬 수 있는 시뮬레이션을 통하여 실증 연구를 진행하였다. 본 논문에서 제시한 실증 연구는 자동차 산업 뿐만 아니라, 범용적으로 타제조업 분야에서도 사용 가능할 수 있다. 또한, 기업적인 측면에서는 그동안 정성적인 방법에 의존하던 로드맵 작성 방법에서 탈피하여 좀 더 정확한 제품-기술로드맵을 통하여 적기에 시장에 제품을 제공함으로써 선도업체로 나아가기 위한 밑거름이 될 것이라고 사료된다.