한국어정보학회:학술대회논문집
Korean Language Information Science Society (klis)
- Annual
Domain
- Linguistics > Korean Linguistics
2017.10a
-
지식베이스의 목표는 세상의 모든 지식을 데이터베이스화 하는 것이지만 지식 획득 능력의 부족으로 항상 지식 부족 문제에 시달린다. 지식 획득은 주로 웹 상에 있는 자연언어문장을 지식화 하는 외부적인 지식 획득을 통해 이루어지지만, 지식베이스 내부에서 지식을 확장해 나가는 방법에 대해서는 연구가 소홀히 이루어지고 있다. 따라서 본 논문에서는 내부적인 지식 획득을 위한 지식베이스 행렬 분해 모델을 소개한다. 본 논문에서 소개하는 방법은 지식베이스를 행렬로 변환한 뒤 행렬 분해 모델을 통해 새로운 지식에 대한 신뢰도를 점수화하는 방법이다. 본 논문에서 소개한 방법의 우수성과 실효성을 입증하기 위해 한국어 지식베이스인 한국어 디비피디아(2016-10)를 대상으로 본 모델의 정확도 측정 실험 결과를 소개한다.
-
본 연구에서는 딥러닝을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 폰트는 디자인 분야에 있어서 필수적인 요소이며 문화적으로도 중요하다. 한글은 영어권 언어에 비해 훨씬 많은 문자를 포함하고 있기 때문에 한글 폰트 인식은 영어권 폰트 인식보다 어렵다. 본 연구에서는 최근 다양한 영상 인식 분야에서 좋은 성능을 보이고 있는 CNN을 이용해 한글 폰트 인식을 수행하였다. 과거에 이루어진 대부분의 폰트 인식 연구에서는 불과 수 십 종의 폰트 만을 대상으로 하였다. 최근에 이르러서야 2000종 이상의 대용량 폰트 인식에 대한 연구결과가 발표되었으나, 이들은 주로 문자의 수가 적은 영어권 문자들을 대상으로 하고 있다. 본 연구에서는 CNN을 이용해 3300종에 이르는 다양한 한글 폰트를 인식하였다. 많은 수의 폰트를 인식하기 위해 두 가지 구조의 CNN을 이용해 폰트인식기를 구성하고, 실험을 통해 이들을 비교 평가하였다. 특히, 본 연구에서는 3300종의 한글 폰트를 효과적으로 인식하면서도 학습 시간과 파라미터의 수를 줄이고 구조를 단순화하는 방향으로 모델을 개선하였다. 제안하는 모델은 3300종의 한글 폰트에 대하여 상위 1위 인식률 94.55%, 상위 5위 인식률 99.91%의 성능을 보였다.
-
감성 분석에서 어휘 말뭉치는 기존의 전통적인 기계학습 방법에서 중요한 특징으로 사용되었다. 최근 딥러닝의 발달로 hand-craft feature를 사용하지 않아도 되는 End-to-End 방식의 학습이 등장했다. 하지만 모델의 성능을 높이기 위해서는 여전히 어휘말뭉치와 같은 특징이 모델의 성능을 개선하는데 중요한 역할을 하고 있다. 본 논문에서는 이러한 어휘 말뭉치를 Attention 모델과
$Na{\ddot{i}}ve$ bayes 모델을 기반으로 구축하는 방법에 대해 소개하며 구축된 어휘 말뭉치가 성능에 끼치는 영향에 대해서 Hierarchical Attention Network 모델을 통해 분석하였다. -
화행이란 의사소통 과정에서 발화자가 가지는 발화 의도를 말한다. 성공적인 의사소통을 위해서는 발화자의 화행을 정확하게 파악하는 것이 매우 중요하다. 본 논문에서는 한국어 대화체 문장의 화행 자동분류를 위해, 화행을 결정짓는 요인이 무엇인지 언어학적으로 분석하고자 하였다. 한국어 수업 대화를 분석하여 화행 분류 체계를 새롭게 자체 정립하였고, 언어학적 근거를 바탕으로 10개의 화행 분류 자질을 제안하였다. 또한 제안하는 화행 분류 자질을 검증하고자 웨카(Weka)를 이용하여 정확률 실험을 진행하였다.
-
채팅 시스템은 기계와 사람이 서로 의사소통 하는 시스템이다. 의사소통 과정에서 질문을 하고 질문에 대한 답변을 하는 질의응답 형태의 의사소통이 상당히 많다. 그러나 기존 생성 기반 채팅 시스템에서 자주 사용되는 Sequence-to-sequence모델은 질문에 대한 답변보다는 좀 더 일반적인 문장을 생성하는 경우가 대부분이다. 이러한 문제를 해결하기 위해 본 논문에서는 복사 방법과 검색 방법을 이용한 생성 기반 질의응답 채팅 시스템을 제안한다. 템플릿 기반으로 구축한 데이터를 통한 실험에서 제안 시스템은 복사 방법만 이용한 질의응답 시스템 보다 45.6% 높은 정확도를 보였다.
-
챗봇 혹은 대화 시스템은 특정 질문이나 발화에 대해 적절한 응답을 해주는 시스템으로 자연어처리 분야에서 활발히 연구되고 있는 주제 중 하나이다. 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 프레임워크가 많이 이용되고 있다. 하지만 해당 방식을 적용한 모델의 경우 학습 데이터에 나타나지 않은 다양한 형태의 질의문에 대해 응답을 잘 못해주는 문제가 있다. 이 논문에서는 이러한 문제점을 해결하기 위하여 디노이징 응답 생성 모델을 제안한다. 제안하는 방법은 다양한 형태의 노이즈가 임의로 가미된 질의문을 모델 학습 시에 경험시킴으로써 강건한 응답 생성이 가능한 모델을 얻을 수 있게 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 질의-응답 쌍으로 구성된 한국어 대화 데이터에 대해 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델에 비해 정량 평가인 ROUGE 점수와 사람이 직접 평가한 정성 평가 모두에서 더 우수한 결과를 보이는 것을 확인할 수 있었다.
-
기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한
$S^2$ -Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한$S^2$ -Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다. -
기계이해 시스템은 주어진 문서를 이해하고 질의에 해당하는 정답을 출력하는 방법으로 심층 신경망을 활용한 주의집중 방법이 발달하면서 활발히 연구되기 시작했다. 본 논문에서는 어휘 정보를 통해 문서와 질의를 이해하는 어휘 이해 모델과 품사 등장 정보, 의존 구문 정보를 통해 문법적 이해를 하는 구문 이해 모델을 함께 사용하여 기계이해 질의응답을 하는 Dual Bi-Directional Attention Flow모델을 제안한다. 한국어로 구성된 18,863개 데이터에서 제안 모델은 어휘 이해 모델만 사용하는 Bi-Directional Attention Flow모델보다 높은 성능(Exact Match: 0.3529, F1-score: 0.6718)을 보였다.
-
문서 요약은 입력 문서가 가진 주제를 유지하면서 크기가 축약된 새로운 문서를 생성하는 것이다. 문서 요약의 방법론은 크게 추출 요약과 추상 요약으로 구분된다. 추출 요약의 경우 결과가 문서 전체를 충분히 대표하지 못하거나 문장들 간의 호응이 떨어지는 문제점이 있다. 최근에는 순환 신경망 구조의 모델을 이용한 추상 요약이 활발히 연구되고 있으나, 이러한 방법은 입력이 길어지는 경우 정보가 누락된다는 문제점을 가지고 있다. 본 논문에서는 이러한 단점들을 해소하기 위해 추출 요약으로 입력 문서의 중요한 일부 문장들을 선별하고 이를 추상 요약의 입력으로 사용했을 때의 성능 변화를 관찰한다. 추출 요약을 통해 원문 대비 30%까지 문서를 요약한 후 요약을 생성했을 때, ROUGE-1 0.2802, ROUGE-2 0.1294, ROUGE-L 0.3254의 성능을 보였다.
-
대규모 분류체계를 사용하는 경우, 기존 방법의 딥 러닝으로는 분류 정확도가 현저히 떨어진다. 이를 해결하기 위해 계층 구조를 활용한 네거티브 샘플링 방법을 제안한다. 학습 문서가 속한 카테고리의 상위 카테고리와 일정부분 겹치는 범위에서 네거티브 샘플을 선택하면, 하나의 큰 문제를 다수개의 하위 문제로 쪼개서 해결하는 학습 효과가 있다. 소규모 분류 체계와 대규모 분류체계 각각에서 샘플링 전략을 차용하였을 때를 비교한 결과, 대규모에서 효과가 좋았으며 그 때의 정확도가 150배 이상 차이가 나는 것을 보였다.
-
CNN(Convolutional Neural Network)을 이용하여 발화 주제 다중 분류 task를 multi-labeling 방법과, cluster 방법을 이용하여 수행하고, 각 방법론에 MSE(Mean Square Error), softmax cross-entropy, sigmoid cross-entropy를 적용하여 성능을 평가하였다. Network는 음절 단위로 tokenize하고, 품사정보를 각 token의 추가한 sequence와, Naver DB를 통하여 얻은 named entity 정보를 입력으로 사용한다. 실험결과 cluster 방법으로 문제를 변형하고, sigmoid를 output layer의 activation function으로 사용하고 cross entropy cost function을 이용하여 network를 학습시켰을 때 F1 0.9873으로 가장 좋은 성능을 보였다.
-
자연어처리에 딥 러닝을 적용하기 위해 사용되는 Word embedding은 단어를 벡터 공간상에 표현하는 것으로 차원축소 효과와 더불어 유사한 의미의 단어는 유사한 벡터 값을 갖는다는 장점이 있다. 이러한 word embedding은 대용량 코퍼스를 학습해야 좋은 성능을 얻을 수 있기 때문에 기존에 많이 사용되던 word2vec 모델은 대용량 코퍼스 학습을 위해 모델을 단순화 하여 주로 단어의 등장 비율에 중점적으로 맞추어 학습하게 되어 단어의 위치 정보를 이용하지 않는다는 단점이 있다. 본 논문에서는 기존의 word embedding 학습 모델을 단어의 위치정보를 이용하여 학습 할 수 있도록 수정하였다. 실험 결과 단어의 위치정보를 이용하여 word embedding을 학습 하였을 경우 word-analogy의 syntactic 성능이 크게 향상되며 어순이 바뀔 수 있는 한국어에서 특히 큰 효과를 보였다.
-
상호(商號)란 상인이나 회사가 영업 활동을 위해 자기를 표시하는데 쓰는 명칭을 말한다. 일반적으로 국내 기업의 상호 표기법은 한글과 로마자를 혼용함으로 상호 검색 시스템에서 단어 불일치 문제를 발생시킨다. 본 연구에서는 이러한 단어 불일치 문제를 해결하기 위해 Sequence-to-sequence 모델을 이용하여 로마자 상호를 이에 대응하는 한글 상호로 변환하고 그 후보들을 생성하는 시스템을 제안한다. 실험 결과 본 연구에서 구축한 시스템은 57.82%의 단어 정확도, 90.73%의 자소 정확도를 보였다.
-
외래어란 외국어로부터 들어와 한국어에 동화되고 한국어로서 사용되는 언어이다. 나날이 우리의 언어사용 문화에서 외래어의 사용 비율은 높아져가는 추세로, 전문분야에서는 특히 두드러진다. 그러므로 더 효율적이고 효과적인 자연언어처리를 위해서 문서 내 외래어 인식은 중요한 전처리 과정이다. 따라서 본 논문에서는 bidirectional LSTM(이하 bi-LSTM)-CRF 모형의 심층학습을 이용한 음절태깅 기반의 외래어 인식 시스템을 제안한다. 제안하는 시스템의 외래어 인식 학습 과정은 다음과 같다. 첫째, 학습용 말뭉치 자료의 한글 음절들과 공백, 마침표(.)를 토대로 word2vec을 통해 학습용 피쳐(feature) 자료를 생성한다. 둘째, 학습용 말뭉치 자료와 학습용 피쳐 자료를 결합하여 bi-LSTM 모형 학습 자료를 구축한다. 셋째, bi-LSTM 모형을 거쳐 학습된 결과물을 CRF 모형에서 로그 가능도(log likelyhood)와 비터비(Viterbi) 알고리즘을 통해 학습 결과물을 내놓는다. 넷째, 학습용 말뭉치 자료의 정답과 비교한 뒤 모형 내부의 수치들을 조정한다. 다섯째, 학습을 마칠 때까지 반복한다. 본 논문에서 제안하는 시스템을 이용하여 자체적인 뉴스 수집 자료에 대해서 높은 정확도와 재현율을 기록하였다.
-
외국어로 구성된 용어를 발음에 기반하여 자국의 언어로 표기하는 것을 음차 표기라 한다. 국가 간의 경계가 허물어짐에 따라, 외국어에 기원을 두는 용어를 설명하기 위해 뉴스 등 다양한 웹 문서에서는 동일한 발음을 가지는 외국어 표기와 한국어 표기를 혼용하여 사용하고 있다. 이에 좋은 검색 결과를 가져오기 위해서는 외국어 표기와 더불어 사람들이 많이 사용하는 다양한 음차 표기를 함께 검색에 활용하는 것이 중요하다. 음차 표기 모델과 음차 표기 대역 쌍 추출을 통해 음차 표현을 생성하는 기존 방법 대신, 본 논문에서는 신뢰할 수 있는 다양한 음차 표현을 찾기 위해 문서에서 음차 표기 후보를 찾고, 이 음차 표기 후보가 정확한 표기인지 판별하는 방식을 제안한다. 다양한 딥러닝 모델을 비교, 검토하여 최종적으로 음차 표기 대역 쌍 판별에 특화된 모델인 Distance LSTM-CNN 모델을 제안하며, 제안하는 모델의 Batch Size 영향을 줄이고 학습 시 수렴 속도 개선을 위해 Layer Normalization을 적용하는 방법을 보인다.
-
본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.
-
구문분석은 자연언어처리의 오랜 관심 분야로 다양한 접근방법과 알고리즘이 시도되어 계속 발전하고 있다. 하지만 기존의 접근방법은, 학습단계에서는 정답으로부터 추출된 이전 정보를 사용하고 평가 단계에서는 예측으로 이루어진 정보를 활용한다는 근본적인 차이가 있다. 이러한 차이를 극복하기 위한 다양한 시도가 있었고 그 중 동적 오라클 기법이 합리적인 시간 증가와 성능향상을 보였다. 본 연구에서는 이러한 동적 오라클 기법을 한국어 구문분석에 적용하였다. 동적 오라클 기법을 한국어에 적용할 때 고려해야하는 부분에 대해 탐구하고 실험을 통해 동적 오라클 기법을 한국어 구문분석에 적용하여 결과를 살펴보았다.
-
딥 러닝 모델은 여러 히든 레이어로 구성되며, 히든 레이어의 깊이가 깊어질수록 레이어의 벡터는 높은 수준으로 추상화된다. 본 논문에서는 Encoder RNN의 레이어를 여러 층 쌓은 멀티 레이어 포인터 네트워크를 제안하고, 멀티 태스크 학습 기반인 멀티 레이어 포인터 네트워크를 이용한 한국어 의존 구문 분석 모델을 제안한다. 멀티 태스크 학습 모델은 어절 간의 의존 관계와 의존 레이블 정보를 동시에 구하여 의존 구문 분석을 수행한다. 실험 결과, 본 논문에서 제안한 모델이 기존 한국어 의존 구문 분석 연구들 보다 좋은 UAS 92.16%, LAS 89.88%의 성능을 보였다.
-
형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.
-
한국어 형태소 분석 및 구구조 구문 분석은 한국어 자연어처리에서 난이도가 높은 작업들로서 최근에는 해당 문제들을 출력열 생성 문제로 바꾸어 sequence-to-sequence 모델을 이용한 end-to-end 방식의 접근법들이 연구되었다. 한국어 형태소 분석 및 구구조 구문 분석을 출력열 생성 문제로 바꿀 시 해당 출력 결과는 하나의 열로서 합쳐질 수가 있다. 본 논문에서는 sequence-to-sequence 모델을 이용하여 한국어 형태소 분석 및 구구조 구문 분석을 동시에 처리하는 모델을 제안한다. 실험 결과 한국어 형태소 분석과 구구조 구문 분석을 동시에 처리할 시 형태소 분석이 구구조 구문 분석에 영향을 주는 것을 확인 하였으며, 구구조 구문 분석 또한 형태소 분석에 영향을 주어 서로 영향을 줄 수 있음을 확인하였다.
-
목적 지향적 대화 시스템(Goal-oriented dialogue system)은 텍스트나 음성을 통해 특정한 목적을 수행할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.
-
cQA(Community-based Question Answering) 시스템은 온라인 커뮤니티를 통해 사용자들이 질문을 남기고 답변을 작성할 수 있도록 만들어진 시스템이다. 신규 질문이 인입되면, 기존에 축적된 cQA 저장소에서 해당 질문과 가장 유사한 질문을 검색하고, 그 질문에 대한 답변을 신규 질문에 대한 답변으로 대체할 수 있다. 하지만, 키워드 매칭을 사용하는 전통적인 검색 방식으로는 문장에 내재된 의미들을 이용할 수 없다는 한계가 있다. 이를 극복하기 위해서는 의미적으로 동일한 문장들로 학습이 되어야 하지만, 이러한 데이터를 대량으로 확보하기에는 어려움이 있다. 본 논문에서는 질문이 제목과 내용으로 분리되어 있는 대량의 cQA 셋에서, 질문 제목과 내용을 의미 벡터 공간으로 사상하고 두 벡터의 상대적 거리가 가깝게 되도록 학습함으로써 의사(pseudo) 유사 의미의 성질을 내재화 하였다. 또한, 질문 제목과 내용의 의미 벡터 표현(representation)을 위하여, semi-training word embedding과 CNN(Convolutional Neural Network)을 이용한 딥러닝 기법을 제안하였다. 유사 질문 검색 실험 결과, 제안 모델을 이용한 검색이 키워드 매칭 기반 검색보다 좋은 성능을 보였다.
-
대화시스템이 적절한 응답을 제시해 주기 위해서는 사용자의 의도를 분석하는 것은 중요한 일이다. 사용자의 의도는 도메인에 독립적인 화행과 도메인에 종속적인 서술자의 쌍으로 나타낼 수 있다. 사용자 의도를 정확하게 분석하기 위해서는 화행과 서술자를 동시에 분석하고 대화의 문맥을 고려해야 한다. 본 논문에서 제안하는 모델은 합성곱 신경망에서 공유 계층을 이용하여 화행과 서술자간 상호작용이 반영된 발화 임베딩 모델을 학습한다. 그리고 순환 신경망을 통해 대화의 문맥을 반영하여 발화를 분석한다. 실험 결과 제안 모델이 이전 모델들 보다 높은 성능 (F1-measure로 화행에 대해 0.973, 서술자 0.919)을 보였다.
-
채팅 시스템은 사람이 사용하는 자연어를 이용해 컴퓨터와 대화를 하는 시스템이다. 한국어 특성상 대화체에서 동일한 의미를 가졌지만 다른 형태를 가진 경우가 많다. 본 논문에서는 Attention mechanism Encoder-Decoder Model을 사용해 한국어 특성에 맞는 효과적인 생성 모델을 만들 수 있는 입력, 출력 단위를 제안한다. 실험에서 정성 평가와 ROUSE, BLEU 평가를 진행한 결과 형태소 단위의 입력 보다 본 논문에서 제안한 색인어 입력 단위의 성능이 높고, 의사 형태소 단위 출력 보다 음절 단위 출력을 사용한 시스템이 더 문법적 오류가 적고 적합한 응답을 생성하는 것을 보였다.
-
공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.
-
원격 지도 학습은 자동으로 매우 큰 코퍼스와 지식베이스 간의 주석 데이터를 생성하여 기계 학습에 필요한 학습 데이터를 사람의 손을 빌리지 않고 저렴한 비용으로 만들 수 있어, 많은 연구들이 관계 추출 문제를 해결하기 위해 원격 지도 학습 방법을 적용하고 있다. 그러나 기존 연구들에서는 모델 학습의 입력으로 사용되는 단어 임베딩에서 단어의 동형이의어 성질을 반영하지 못한다는 단점이 있다. 때문에 서로 다른 의미를 가진 동형이의어가 하나의 임베딩 값을 가지다 보니, 단어의 의미를 정확히 파악하지 못한 채 관계 추출 모델을 학습한다고 볼 수 있다. 본 논문에서는 원격 지도 학습 기반 관계 추출 모델에 다중-어의 단어 임베딩을 적용한 모델을 제안한다. 다중-어의 단어 임베딩 학습을 위해 어의 중의성 해소 모듈을 활용하였으며, 관계 추출 모델은 문장 내 주요 특징을 효율적으로 파악하는 모델인 CNN과 PCNN을 활용하였다. 본 논문에서 제안하는 다중-어의 단어 임베딩 적용 관계추출 모델의 성능을 평가하기 위해 추가적으로 2가지 방식의 단어 임베딩을 학습하여 비교 평가를 수행하였고, 그 결과 어의 중의성 해소 모듈을 활용한 단어 임베딩을 활용하였을 때 관계추출 모델의 성능이 향상된 결과를 보였다.
-
심층학습 모델 중 LSTM-CRF는 개체명 인식, 품사 태깅과 같은 sequence labeling에서 우수한 성능을 보이고 있다. 한국어 개체명 인식에 대해서도 LSTM-CRF 모델을 기본 골격으로 단어, 형태소, 자모음, 품사, 기구축 사전 정보 등 다양한 정보와 외부 자원을 활용하여 성능을 높이는 연구가 진행되고 있다. 그러나 이런 방법은 언어 자원과 성능이 좋은 자연어 처리 모듈(형태소 세그먼트, 품사 태거 등)이 없으면 사용할 수 없다. 본 논문에서는 LSTM-CRF와 최소한의 언어 자원을 사용하여 다국어에 대한 개체명 인식에 대한 성능을 평가한다. LSTM-CRF의 입력은 문자 기반의 n-gram 표상으로, 성능 평가에는 unigram 표상과 bigram 표상을 사용했다. 한국어, 일본어, 중국어에 대해 개체명 인식 성능 평가를 한 결과 한국어의 경우 bigram을 사용했을 때 78.54%의 성능을, 일본어와 중국어는 unigram을 사용했을 때 각 63.2%, 26.65%의 성능을 보였다.
-
Deep learning의 개발에 따라 개체명 인식에도 neural network가 적용된 연구가 활발히 일어나고 있다. 영어권 개체명 인식에서는 F1 score 90%을 웃도는 성능을 내는 연구들이 나오고 있다. 하지만 한국어는 영어와 언어적 특질이 많이 달라 이를 그대로 적용시키는 데는 어려움이 있어 영어권 개체명 인식기에 비해 비교적 낮은 성능을 보인다. 본 논문에서는 "하다" 접사의 동사형이 보존된 워드 임베딩을 사용하고 한국어 개체명의 특징을 담은 one-hot 벡터를 추가하여 한국어의 특질에 보다 적합한 데이터를 deep learning 기술에 적용하였다.
-
본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.
-
Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.
-
딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.
-
자연어 생성은 특정한 조건들을 만족하는 문장을 생성하는 연구로, 이러한 조건들은 주로 표와 같은 축약되고 구조화된 의미 표현으로 주어지며 사용자가 자연어로 생성된 문장을 받아야 하는 어떤 분야에서든 응용이 가능하다. 본 논문에서는 SC(Semantically Conditioned)-GRU기반 encoder-decoder모델을 이용한 자연어 생성 모델을 제안한다. 본 논문에서 제안한 모델이 SF Hotel 데이터에서는 0.8645 BLEU의 성능을, SF Restaurant 데이터에서는 0.7570 BLEU의 성능을 보였다.
-
본 연구는 거시적 빅데이터 인문학과 미시적 언어 텍스트 검색 시스템을 구축하고, 이를 통해서 언어를 통한 문화의 역동적 변화를 시간적 순서에 따라 살펴보고자 한다. 연구의 최종적인 목표는 문화도 생물체처럼 변화하는 존재라 여기고 그 구성요소들을 연구한다는 뜻인 '문화체학(文化體學; Culturomics)'과 같은 '인문학 + 정보과학 + 사회과학' 등등의 다학문간의 융합적 연구에 있다. 이 시스템을 통해서 인류 역사의 기록인 텍스트 빅데이터를 통한 인문학적 성찰을 시각화하고 있다. 이러한 구글의 업적은 인문학과 정보기술의 융합을 통해서 인문학 자체의 지평을 넓히고, 사회과학을 변형시키고, 산업과 상아탑 사이의 관계를 재조정하는데 있다[1].
-
단어 벡터는 단어 사이의 관계를 벡터 연산으로 가능하게 할 뿐 아니라, 상위의 신경망 프로그램의 사전학습 데이터로 많이 활용되고 있다. 한국어 어절은 생산적인 조사나 어미 때문에 효율적인 단어 벡터 생성이 어려워 대개 실질형태소만을 사용하여 한국어 단어 벡터를 생성한다. 본 논문에서는 실질형태소와 형식형태소를 모두 사용하되, 형식형태소를 적절하게 분류하여 단어 벡터의 성능을 높이는 방법을 제안한다. 자체 구축한 단어 관계 테스트 집합으로 추출 성능을 평가해 본 결과, 제안한 방법으로 형식형태소를 사용할 경우, 성능이 향상되었다.
-
With the advent of robust deep learning method, Neural machine translation has recently become a dominant paradigm and achieved adequate results in translation between popular languages such as English, German, and Spanish. However, its results in under-resourced languages Korean and Vietnamese are still limited. This paper reports an attempt at constructing a bidirectional Korean-Vietnamese Neural machine translation system with the supporting of Korean analysis tool - UTagger, which includes morphological analyzing, POS tagging, and WSD. Experiment results demonstrate that UTagger can significantly improve translation quality of Korean-Vietnamese NMT system in both translation direction. Particularly, it improves approximately 15 BLEU scores for the translation from Korean to Vietnamese direction and 3.12 BLEU scores for the reverse direction.
-
'서치 방지 단어'는 SNS 상에서 사용자들이 작성한 문서의 검색 및 수집을 피하기 위하여 사용하는 변이형을 뜻한다. 하나의 검색 키워드가 있다면 그와 같은 대상을 나타내는 변이형이 여러 형태로 존재할 수 있으며, 이들 변이형에 대한 검색 결과를 함께 수집할 수 있다면 데이터 확보가 중요하게 작용하는 다양한 연구에 큰 도움이 될 것이다. 본 연구에서는 특정 단어가 주어진 키워드로부터 의미 벡터 상의 거리가 가까울수록, 그리고 주어진 키워드와 비슷한 음성적 형태 즉 발음을 가질수록, 해당 키워드의 변이형일 가능성이 높을 것이라고 가정하였다. 이에 따라 단어 임베딩을 이용한 의미 유사도와 최소 편집 거리를 응용한 음성적 유사도를 이용하여 주어진 검색 키워드와 유사한 변이형들을 제안하고자 하였다. 그 결과 구성된 변이형 후보의 목록에는 다양한 형태의 단어들이 포함되었으며, 이들 중 다수가 실제 SNS 상에서 같은 의미로 사용되고 있음이 확인되었다.
-
기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.
-
채팅 모델은 인간과 컴퓨터가 신변잡기 대화를 나눌 수 있게 해주는 시스템으로 빠른 속도로 발전하는 인공지능 음성언어 비서 시스템에 필수적으로 사용되는 기술이다. 본 논문에서는 검색기반 채팅 모델에서 발생하는 검색 효율 문제와 정확하지 못한 답변을 출력하는 문제를 해결하기 위해 색인어 정규화와 응답 필터링이 적용된 검색기반 채팅 모델을 제안한다. 색인어 정규화를 통해 99.3%의 색인 커버리지를 확보하였으며 필터링 모델을 통해 기존 검색 모델에서보다 향상된 사용자 만족도를 얻었다.
-
의료정보시스템의 상호운용을 위해 개발된 의료정보 교환 국제 표준인 HL7은 복잡한 구조와 문법으로 인해 컴퓨터 소프트웨어로 관리되고 있다. 현재 개발되고 있는 HL7 인터페이스 소프트웨어에서는 다양한 버전 간 호환이 되지 않아 의료정보시스템에서 버전 상호 간의 호환을 위해 변환 소프트웨어 모듈을 개발하여 사용한다. 그러나 다양한 버전(V2.1~V2.8)의 HL7 메시지 간 상호 변환을 위해 소프트웨어 모듈을 모두 개발하는 것은 많은 시간과 막대한 비용 및 노력이 필요한 비효율적인 방법이다. 따라서 본 연구에서는 HL7 버전 호환성 정의에 기반을 두어 버전별 상호변환이 가능한 HL7 파서(Parser)를 설계하고, 객체 지향적 구조에 기반을 두어 하위 버전과의 호환(Backward Compatibility)뿐만 아니라 상위 버전과 호환(Forward Compatibility) 가능한 파서를 제안한다. 또한, 버전 간 변환 실험을 통해 효용성을 검증하였다.
-
본 논문은 한글 자모 조합 임베딩을 이용하여 오타에 강건한 한국어 품사 태깅 시스템을 구축하는 방법에 대해 기술한다. 최근 딥 러닝 연구가 활발히 진행되면서 자질을 직접 추출해야 하는 기존의 기계학습 방법이 아닌, 스스로 자질을 찾아서 학습하는 딥 러닝 모델을 이용한 연구가 늘어나고 있다. 본 논문에서는 다양한 딥 러닝 모델 중에서 sequence labeling에 강점을 갖고 있는 bidirectional LSTM CRFs 모델을 사용하였다. 한국어 품사 태깅 문제에서 일반적으로 사용되는 음절 임베딩은 약간의 오타에도 품사 태깅 성능이 크게 하락하는 한계가 있었다. 따라서 이를 개선하기 위해 본 논문에서는 한글 자모 임베딩 값을 조합시킨 음절 임베딩 방식을 제안하였다. 강제로 오타를 발생시킨 테스트 집합에서 실험한 결과, 자모 조합 임베딩 기법이 word2vec 음절 임베딩 방식에 비해 형태소 분할은 0.9%, 품사 태깅은 3.5% 우수한 성능을 기록하였다.
-
고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.
-
말과 글에서 유추가 가능한 정보에 대해서는 사람들이 일반적으로 생략해서 표현하는 경우를 볼 수 있다. 사람들은 생략된 정보를 문맥적으로 유추하여 이해하는 것이 어렵지 않지만, 컴퓨터의 경우 생략된 정보를 고려하지 못해 주어진 정보를 완전하게 이해하지 못하는 문제를 낳게 된다. 우리는 이러한 문제를 생략어복원을 통해 해결할 수 있다고 여기면서 본 논문을 통해 한국어 생략어복원에 대해 정의하고 기술 개발에 필요한 말뭉치 구축 시의 생략어복원 대상 및 태깅 사례를 포함하는 가이드라인을 제안한다. 또한 본 가이드라인에 의한 말뭉치 구축 및 기술 개발을 통해서 엑소브레인과 같은 한국어 질의응답 시스템의 품질 향상에 기여하는 것이 본 연구의 궁극적인 목적이다.
-
최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.
-
본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.
-
본 논문에서는 21세기 세종계획 "현대문어 형태 분석 말뭉치"에서 나타나는 오류를 개선하는 방법으로 패치 시스템을 제안한다. 이 패치 시스템은 패치 파일과 패치 적용-생성 스크립트로 구성되며, 사용자들은 패치 파일을 사용하여 원래의 말뭉치에서 어떤 파일과 어절을 수정하였는지 확인할 수 있어 개발 목적에 맞는 학습 말뭉치를 생성할 수 있다. 또한 이 시스템을 이용해 서로의 수정 사항을 공유하고, 지속적으로 세종 말뭉치의 오류를 개선할 수 있다. 본 논문에서는 총 1,015만 어절을 대상으로 31만여 개의 오류를 수정하였다. 오류의 유형으로는 문장, 어절 분리 오류, 철자 오류, 불일치 오류, 분석 오류, 형식 오류가 있으며, 오류 수정 사항을 패치 파일에 반영하였다.
-
본 논문은 신문기사의 감성 댓글을 생성하기 위한 시스템을 제시한다. 감성을 고려한 댓글 생성을 위해 기존의 Sequence-to-Sequence 모델을 사용하여 긍정, 부정, 비속어 포함, 비속어 미포함 유형의 4개의 감성 모델을 구축한다. 하나의 신문 기사에는 다양한 댓글이 달려있지만 감성 사전과 비속어 사전을 활용하여 하나의 댓글만 선별하여 사용한다. 분류한 댓글을 통해 4개의 모델을 학습하고 감성 유형에 맞는 댓글을 생성한다.
-
본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 히며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.
-
본 논문은 공공 데이터 Open API와 사용자의 과거 행동과 주변 상황정보를 토대로 사용자가 선호하는 문화를 맞춤 추천하는 어플리케이션인 '눈치 코칭_문화'의 설계 및 구현에 대하여 서술한다. '눈치 코칭_문화'는 사용자가 쉽게 문화를 추천 받을 수 있도록 만들어진 어플리케이션으로 기존의 필터링 방식으로 사용자가 검색하는 방식의 어플리케이션들과 달리 사용자의 주변 상황과 사용자의 취향 분석을 통해 최적의 문화 Contents를 어플리케이션을 통해 제공한다. 사용자의 별도의 상세검색이나 검색, 좋아요 기능, 주변 위치와 같은 상황 정보를 어플리케이션 사용 로그를 저장 후 데이터 전처리를 하여 사용자에게 다시금 피드백 되는 어플리케이션이다. 지속적인 알림을 통해 사용자에게 문화를 추천하도록 만들었다. 또한, 사용자에게 문화의 날 정보와 사용자 주변 위치의 문화센터를 추천하여 사용자의 문화 활동을 지향한다.
-
질의응답 시스템에서 정답을 제약하기 위한 위키피디아 영역의 정답제약 9개를 정의하고 질문 문장에서 제약표현을 추출하는 방법을 제안한다. 다어절의 정답제약 표현을 추출하기 위해서 언어분석 결과를 활용하여 정답제약 후보를 생성하며 후보단위로 정답제약 표현을 학습하기 위한 자질을 제시한다. 기계학습 방법을 이용하여 정답제약 후보 별로 정답제약 태그를 분류하여 정답제약 표현을 추출한다. 성능 실험은 각 정답제약 태그 별로 F1-Score 평가를 수행하였다.
-
본 연구에서는 COPD와 기존에 연관이 있는 것으로 알려진 바이오마커 이외의 새로운 바이오마커를 찾고자 한다. Pubmed Data에서 선정한 암 관련 바이오마커를 추출하여 COPD와 암 관련 바이오마커의 관계를 파악하는 데이터로 사용한다. 그리고 워드 임베딩 모델 중 Word2vec을 사용하여 워드 임베딩 한다. 워드 임베딩한 K차원의 COPD와 암 관련 바이오마커를 t-SNE를 사용하여 시각화한다. 또한 코사인 유사도를 이용하여 COPD와 암 관련 바이오마커의 유사도를 측정한다. 그리고 코사인 유사도와 t-SNE 결과를 이용하여 COPD와 암 관련 바이오마커와의 상관관계를 파악할 수 있으며, 암 관련 바이오마커와 COPD 관련 바이오마커를 비교 하여 기존의 COPD와 연관이 있다고 알려진 바이오마커 이외의 새로운 바이오마커를 찾을 수 있다.
-
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
-
This paper is to broaden the possible spectrums of analyzing the Korean-written novel "The Vegetarian" by using the computational linguistics program. Through the use of language model, which was usually used in bi-gram analysis in corpus linguistics, to the International Man Booker award winning novel, the characteristics of "The Vegetarian" is investigated by comparing it to the English-written novel "A Little Life".
-
본 연구는 리마인더 앱을 위한 효과적인 시간 표현 분석 방법을 제안한다. 시간 표현 분석을 위한 정규식 패턴을 이용하여 사용자 발화 텍스트로부터 시간 정보를 분석하고 시간 표현 유형에 따라 절대적 시간 정보로 변환한다. 제안한 방법은 정규식 패턴을 이용한 시간 표현 분석 기법으로 시스템의 유지 관리가 용이하고 정보량이 많은 패턴과의 매칭을 위해 효과적이다.
-
대화 시스템(dialogue system)은 사용자의 언어를 이해하고 그 의도를 분석하여 사용자가 원하는 목적을 달성할 수 있게 도와주는 시스템이다. 인간과 비슷한 수준의 대화를 위해서는 대량의 데이터가 필요하며 데이터의 양질에 따라 그 결과가 달라진다. 최근 페이스북에서 End-to-end learning 방식을 기반으로 한 영어로 구성된 식당 예약 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하여 해당 모델에 적용한 연구가 있다. 대화 시스템에서 활용 가능한 연구가 활발히 진행되고 있지만 영어 기반의 데이터와는 다르게 식당 예약 시스템에서 다른 연구자들의 연구 목적으로 공유한 한국어 데이터셋은 아직까지도 미흡하다. 본 논문에서는 페이스북에서 구축한 영어로 구성된 식당 예약 학습 대화 데이터셋을 이용하여 한국어 기반의 식당 예약 대화 시스템에서 활용 가능한 한국어 데이터셋을 구축하고, 일상생활에서 발생 가능한 발화(utterance)에 따른 형태 변화를 통해 한국어 식당 예약 시스템 데이터셋 구축 방법을 제안한다.
-
본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.
-
대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.
-
현대사회에 존재하는 다양한 시스템들이 병합될 때는 병합을 위해서 여러 가지 방법을 사용해 볼 수 있다. 이때 시스템의 성격에 따라 더 적절한 병합 방법론이 존재할 수 있지만, 어떤 방법이 해당 시스템을 통합하는데 더 적절한지를 판단하기는 쉽지 않다. 본 논문에서는 서로 다른 시스템을 통합할 때, 그 상호 운용성을 평가하기 위한 수단으로 트리의 유사도를 측정하는 방안을 제시한다. 이렇게 측정된 유사도는 0이상 1이하의 값을 가지며, 정확한 수치로 제시되기 때문에 서로 다른 통합 방법론을 평가하기 위한 계량적 근거로 사용될 수 있다. 다만 트리 구조로 나타낼 수 없는 일부 시스템들에 대해서는 적용할 수 없는 한계를 가진다.
-
On the basis of studies that show multi-word combinations, that is the field of phraseology, this study aims to examine relationship between the quality of text and phraseological competence in L2 English writing, following Yves Bestegen et al. (2014). Using two different association scores, t-score and Mutual Information(MI), which are opposite ways of measuring phraseological competence, in terms of scoring frequency and infrequency, bigrams from L2 writers' text scored based on a reference corpus, GloWbE (Corpus of Global Web based English). On a cross-sectional approach, we propose that the quality of the essays and the mean MI score of the bigram extracted from YELC, Yonsei English Learner Corpus, correlated to each other. The negative scores of bigrams are also correlated with the quality of the essays in the way that these bigrams are absent from the reference corpus, that is mostly ungrammatical. It indicates that increase in the proportion of the negative scored bigrams debases the quality of essays. The conclusion shows the quality of the essays scored by MI and t-score on cross-sectional approach, and application to teaching method and assessment for second language writing proficiency.
-
본 논문에서는 Multi-layer sequence-to-sequence 구조를 이용해 한국어 대화 시스템을 개발하였다. sequence-to-sequence는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉층의 embedding에 기반해 출력열을 생성한다. 우리는 sequence-to-sequence로 입력된 발화에 대해 출력 발화를 내어주는 대화 모델을 학습하였고, 그 성능을 측정하였다. RNN에 대해서는 약 80만 발화를, MTRNN에 대해서는 5만 발화를 학습하고 평가하였다. 모델의 결과로 나타난 발화들을 정리하고 분석하였다.
-
교수-학습 발화는 발화 턴 간에 규칙화된 인과관계가 강하고 자연 발화에서의 출현율이 낮다. 일반적으로 어휘부, 표현 제시부, 대화부로 구성되며 커리큘럼과 화제에 따라 구축된 언어자원이 필요하다. 기존의 말뭉치는 이러한 교수-학습 발화의 특징을 반영하지 않았기 때문에 한국어 교육용 튜터링 챗봇을 개발하는 데에 활용도가 떨어진다. 이에 따라 이 논문에서는 자연스러운 언어 사용 수집, 도구 기반의 수집, 주제별 수집 및 분류, 점진적 구축 절차의 원칙에 따라 교수-학습의 실제 상황을 반영하는 준구어 말뭉치를 구축한다. 교실에서 발생하는 언어학습 상황을 시나리오로 구성하여 대화 흐름을 제어하고 채팅용 메신저와 유사한 형태의 도구를 통해 말뭉치를 구축한다. 이 연구는 한국어 튜터링 챗봇을 개발하기 위해 말뭉치 구축용 챗봇과 한국어 학습자, 한국어 교수자가 시나리오를 기반으로 발화문을 생성한 준구어 말뭉치를 최초로 구축한다는 데에 의의가 있다.
-
SNS와 스마트기기의 발전으로 온라인을 통한 뉴스 배포가 용이해지면서 악의적으로 조작된 뉴스가 급속도로 생성되어 확산되고 있다. 뉴스 조작은 다양한 형태로 이루어지는데, 이 중에서 정상적인 기사 내에 광고나 낚시성 내용을 포함시켜 독자가 의도하지 않은 정보에 노출되게 하는 형태는 독자가 해당 내용을 진짜 뉴스로 받아들이기 쉽다. 본 논문에서는 뉴스 기사 내에 포함된 문단 중에서 부적합한 문단이 포함 되었는지를 판정하기 위한 방법을 제안한다. 제안하는 방식에서는 자연어 처리에 유용한 Convolutional Neural Network(CNN)모델 중 Word2Vec과 tf-idf 알고리즘, 로지스틱 회귀를 함께 이용하여 뉴스 부적합 문단을 검출한다. 본 시스템에서는 로지스틱 회귀를 이용하여 문단의 카테고리를 분류하여 본문의 카테고리 분포도를 계산하고 Word2Vec을 이용하여 문단간의 유사도를 계산한 결과에 가중치를 부여하여 부적합 문단을 검출한다.
-
본 논문에서는 단순하지만 효과적인 단어 표현 방법인 Bags of Features에 대한 비교 실험을 수행한다. Bags of Features는 어휘집의 크기에 제한이 없으며, 문자 단위의 정보를 반영하고, 벡터화 과정에서 신경망 구조에 의존하지 않는 단어 표현 방법이다. 영어 품사 부착 실험을 사용하여 실험한 결과, one-hot 인코딩을 사용한 모델과 대비하여 학습 데이터에 존재하지 않는 단어의 경우 49.68%, 전체 부착 정확도는 0.96% 향상이 관찰되었다. 또한, Bags of Features를 사용한 모델은 기존의 영어 품사 부착 분야의 최첨단 모델들 중 학습 데이터 외의 추가적인 데이터를 활용하지 않는 모델들과 비견할 만한 성능을 보였다.
-
시간정보추출 연구는 자연어 문장으로부터 대화의 문맥과 상황을 파악하고 사용자의 의도에 적합한 서비스를 제공하는데 중요한 역할을 하지만, 한국어의 고유한 언어적 특성으로 인해 한국어 텍스트에서는 개체간의 시간관계를 정확하게 인식하기 어려운 경향이 있다. 특히, 시간표현이나 사건에 대한 상대적인 시간관계는 시간 문맥을 체계적으로 파악하기 위해 중요한 개념이다. 본 논문에서는 한국어 자연어 문장에서 상대적인 시간표현과 사건 간의 관계를 추출하기 위한 LSTM(long short-term memory) 기반의 상대시간관계 추출 모델을 제안한다. 시간정보추출 연구에는 TIMEX3, EVENT, TLINK 추출의 세 가지 과정이 포함되지만, 본 논문에서는 특정 문장에 대해서 이미 추출된 TIMEX3 및 EVENT 개체를 제공하고 상대시간관계 TLINK를 추출하는 것만을 목표로 한다. 또한, 사람이 직접 태깅한 한국어 시간정보 주석 말뭉치를 대상으로 LSTM 기반 제안모델들의 상대적 시간관계 추출 성능을 비교한다.
-
한국어 형태소 분석은 많은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있기 때문에 형태소를 분류하고 형태소에 맞는 알맞은 품사를 결정하는 것은 매우 중요하다. 형태소의 품사를 태깅하는 대표적인 방법은 크게 음절 단위 형태소 분석과 단어 단위 형태소 분석의 두 가지로 나눌 수 있다. 본 논문에서는 의존 파싱 분야에서 널리 활용되고 있는 전이 기반 방식을 적용하여 전이 기반 단어 단위 한국어 형태소 분석 모델을 제안하고 해당 모델을 한국어 형태소 분석 데이터인 세종 품사 부착 말뭉치 셋에 적용하여 F1 97.77 %로 기존의 성능을 더욱 향상시켰다.
-
Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon 309
개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다. -
개체명 인식은 자연어 문장에서 장소, 제작물, 사람 등 분류를 통한 의미 부여가 가능한 단어를 파악하는 기술로서 의미 분석을 위한 핵심 기술이다. 현재 많은 개체명 분석 관련 연구들은 형태소 분석 결과에 의존적인 형태를 갖고 있어서, 형태소 분석 결과의 정확성이 개체명 분석 결과의 성능에 영향을 미치고 있다. 본 연구에서는 형태소 분석 과정을 거치지 않는 음절 기반의 개체명 분석 기술을 제안하여 형태소 분석의 정확도가 낮은 통신어, 신조어 분석 성능을 향상하였다. 또한, 자동화된 방법으로 음절 단위 개체명 말뭉치 및 개체명 사전을 구축하는 프로세스를 정의하여 개체명 분석의 정확도 향상 및 인지 범주의 확대를 도모하였다. 본 연구에서 제안한 개체명 인식 기술은 한국어 개체명 표준에 기반한 129가지의 개체명 분류가 가능하며, 이는 자연어 처리 기술이 필요한 산업계에서 상용화하는데 큰 기여를 할 것으로 판단된다.
-
개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.
-
개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.
-
개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식 시스템을 개발하기 위해 딥러닝 기반의 워드 임베딩(word embedding) 자질과 문장의 형태적 특징 및 기구축 사전(lexicon) 기반의 자질 구성 방법을 제안하고, bi-directional LSTM, CNN, CRF과 같은 모델을 이용하여 구성된 자질을 학습하는 방법을 제안한다. 실험 데이터는 2017 국어 정보시스템 경진대회에서 제공한 2016klpNER 데이터를 이용하였다. 실험은 전체 4258 문장 중 학습 데이터 3406 문장, 검증 데이터 426 문장, 테스트 데이터 426 문장으로 데이터를 나누어 실험을 진행하였다. 실험 결과 본 연구에서 제안하는 모델은 BIO 태깅 방식의 개체 청크 단위 성능 평가 결과 98.9%의 테스트 정확도(test accuracy)와 89.4%의 f1-score를 나타냈다.
-
개체명 인식(Named Entity Recognition, 이하 NER)은 인명(PS), 기관명(OG), 장소(LC), 날짜(DT), 시간(TI) 등에 해당하는 개체명에 일정한 태깅 값을 주어 그 정보를 가시화하는 작업이다. 한국어 개체명 인식은 아직 그 자질이 충분히 밝혀져 있지 않아 자연어 처리 분야의 발전을 더디게 하는 한 요소로 작용하고 있다. 한국어가 음절 기반으로 단어를 형성하고 비교적 어순이 자유롭다는 특성이 있기에, 이런 특징을 잘 포착할 수 있는 "음절 기반의 Convolutional Neural Network(CNN)"의 아키텍쳐를 제안하여 66.80%의 성능을 보였다. 이 방법을 사용하면 형태소 분석등 개체명 이전 단계에서 발생하는 오류에 의해 개체명 인식(NER)의 성능이 떨어지는 문제를 해결할 수 있고, 조사나 어미 등을 제거하기 위한 후처리를 생략할 수 있다.
-
본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.
-
본 논문은 개체명 인식을 위해 CRF 모델을 이용해 분류를 수행했다. 개체명 후보를 개체명으로 식별에서 중의성 문제가 필요하다. 본 논문에서는 이러한 중의성 문제 해결을 위해 학습 셋으로부터 패턴과 형태적 특성을 고려해 개체명 후보를 최대로 선택하고 선택된 개체명 후보의 중의성과 정확도를 높이기 위해 주변의 문맥 자질과 분별 확률 모델인 CRF를 이용해 중의성 문제를 해결한다.