Yamane, Yasuo;Takahashi, Katsuhiko;Hamada, Kunihiro;Morikawa, Katsumi;Bahagia, Senator Nur;Diawati, Lucia;Cakravastia, Andi
97
This paper develops a technology level quantification (TLQ) model by utilizing a learning curve. Original learning curve shows the relationship between cumulative number of units and the required time for the unit. On the other hand, in our developed model, the technology level, such as speed of production and quality of the produced items, is expressed as a function of not cumulative number of units but time, for increasing generality. Furthermore, for expressing each learning that consists of conceptual learning and operational learning, S-curve is utilized in our developed model. By fitting the S-curve and/or decomposing into some activities, our TQL model can be applied to approximate organizational and complicated process. Some variations in time and levels, parameters of our developed model are shown. By using the parameters, the procedure to identify our developed model is proposed. Also, the influential factors for the parameters of our developed model are discussed with classifying the factors into technoware, infoware, humanware, and orgaware. The expected technology level is utilized for expecting the capacity of production system, and the expected capacity can be utilized in predicting various changes in the organization and deciding managerial decision about TT. A case study in manufacturing industry shows the effectiveness of the developed model.