In a wafer fabrication factory, the completion time of an order is affected by many factors related to the specifics of the order and the status of the system, so is difficult to predict precisely. The level of influence of each factor on the order completion time may also depend on the production system characteristics, such as the rules for releasing and dispatching. This paper presents a method to identify those factors that significantly impact upon the order completion time under various combinations of scheduling rules. Computer simulations and statistical analyses were used to develop effective due date assignment models for improving the due date related performances. The first step of this research was to select the releasing and dispatching rules from those that were cited so frequently in related wafer fabrication factory researches. Simulation and statistical analyses were combined to identify the critical factors for predicting order completion time under various combinations of scheduling rules. In each combination of scheduling rules, two efficient due date assignment models were established by using the regression method for accurately predicting the order due date. Two due date assignment models, called the significant factor prediction model (SFM) and the key factor prediction model (KFM), are proposed to empirically compare the due date assignment rules widely used in practice. The simulation results indicate that SFM and KFM are superior to the other due date assignment rules. The releasing rule, dispatching rule and due date assignment rule have significant impacts on the due date related performances, with larger improvements coming from due date assignment and dispatching rules than from releasing rules.