• Title/Summary/Keyword: 고속철도교량

Search Result 173, Processing Time 0.029 seconds

Seismic Response of CWR on HSR Bridge Considering Derailment Inducing Factors (탈선취약요소를 고려한 고속철도교량 장대레일 지진응답 평가)

  • Yi, Jang-Seok;Kim, Dae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.29-38
    • /
    • 2009
  • n the event of an earthquake, additional stresses can occur in the continuous welded rails (CWR) of High-speed railway (HSR) bridges due to relative displacements at expansion joints, and this stress can cause derailment. The amplification of ground motion occurs as a result of site effects, and this is pronounced at the site of a soft surface soil layer and of a rigid surface soil layer over a soft one. As a result, the amplified ground motion leads to an amplified seismic response in HSR bridges. A change in bridge pier height affects the seismic behavior of the bridge. A HSR bridge with gravel ballast tracks will show different dynamic behavior during an earthquake than one with concrete ballast tracks. The seismic responses of HSR bridges and their CWR are analyzed considering the derailment-inducing factors.

교량용 건설기계의 운용 문제점

  • 최용호;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.185-190
    • /
    • 2002
  • 교량 공사는 우선 한강다리 건설공사만 해도 그간 많은 완성과 실패를 뉴스매체를 통해 보고 있다. 고속철도 공단주도의 경부고속철도 건설을 위한 교량은 수상, 육상 등 모든 부분에 적용되어 있다. 기존 교량에 대한 교통량 증가로 확장공사가 이루어지고 있기도 하다. 교량은 산업기반 시설이 되므로 규모가 크고 인력보다는 대형 건설기계가 소요된다 한국산업안전공단의 조사보고서(2002. 6)에 의하면 토목공사에서 18.7%의 사고율을 점하고 있고, 이중도로 9.9, 교량터널 1.1%을 점유하고 있다.(중략)

  • PDF

Longitudinal Dynamic Behavior of KASR-Bridge Installed Creep-Couplers (Creep-Coupler가 설치된 KHSR 교량으 종방향 동적거동)

  • 곽종원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.111-116
    • /
    • 2000
  • 경간사이에 creep-coupler가 설치된 경부 고속철도 교량에 TGV-K 열차의 제동에 의한 교량의 종방향 동적거동을 해석하였다. 교량은 40m 길이의 2경간 연속교이며, 종방향 충격 하중을 인접 경간 혹은 교대로 전달하기 위한 목적으로 인접하고 있는 두 교량 사이의 creep-coupler가 설치되었다. 철도교의 경우에는 레일에 대한 종방향 축력검토가 매우 중요하므로, 이를 지지하고 있는 교량의 하부구조(교각과 기초)의영 향을 고려한 교량의 동적거동해석이 요구된다. 본 연구에서는 TGV-K의 실제 제동하중에 의한 KHSR(Korea high speed railway)에 건설중인 실제교량의 동해석을 하부구조와 동특성치를 고려하여 수행하였다. TGV-K는 객차사이에 대차가 위치하므로 전체 열차의 모델링이 한꺼번에 이루어 져야한다. 동핵석을 위해서 열차의 3차원 수치모델링이 이루어졌다. TGV-K의 제동은 동력차의 전기적인 제동에 의한 회생제동력(regenerative braking force)과 객착의 기계적인 판제동(disk braking)으로 이루어진다. 이러한 제동작용의 고려에 실제 TGV-K의 제동함수가 사용되었다.

  • PDF

Dynamic Analysis for a Arch Railway Bridge Considering Real Train Loads (실 열차하중을 고려한 아치 교량의 동적해석)

  • Kim, Jung-Hun;Lee, Joo-Tak;Lee, Myeong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • 고속열차(KTX)를 지지하는 구조물은 차량과 지속적인 접촉을 갖는 구조를 가지고 있으므로 고속열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 고속열차의 연행이동집중하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계 기준사항들을 만족해야한다. 호남고속철도 설계지침에 의하면 고속열차(KTX)의 운행 안정성을 평가하기 위한 항목들로 대상 교량의 고유진동수, 상판 수직가속도, 면틀림 그리고 승차감을 고려한 연직처침 등이 요구된다. 따라서, 본 연구에서는 KTX의 실 열차하중을 고려하여 연행이동집중하중으로 아치 교량의 동적거동을 검토하였으며, 호남고속철도 설계지침을 적용하여 대상 교량의 운행 안정성을 평가하였다.

  • PDF

The Dynamic Effect of Highspeed Trains on Railway Bridges (고속철도 차량의 주행이 교량에 미치는 충격효과)

  • Yu, Chul Soo;Kang, Young Jong;Kim, Jong Heun;Kweon, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.187-199
    • /
    • 1998
  • The highspeed railway bridge which support continuous and high moving mass evalute the dynamic state and make the displacement of the bridge makes more or less, but up to this time the bridges are designed by the static design concept. for example when we design bridge we use impact factor, which only times the static load makes dynamic load. But becouse it simples. it can't express all of the effects. And so, in this report we study the modeling method of the moving mass and the dynamic factor.

  • PDF

Verified 20-car Model of High-speed Train for Dynamic Response Analysis of Railway Bridges (검증된 고속철도 차량의 20량편성 정밀모형에 의한 철도교량의 동적응답 분석)

  • 최성락;이용선;김상효;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.693-702
    • /
    • 2002
  • The aim of this study is to develop a 3-dimensional dynamic analysis model, capable of considering the interaction between vehicles and bridges more accurately. The dynamic analysis model is developed with the high-speed train (KTX) and a 2-span continuous prestressed concrete box girder bridge with a double track. The 20-car model is developed using the moving vehicle model for the regular trainset. Three-dimensional frame elements are used for the bridge model. Using the developed models, a dynamic behavior analysis program is coded. The analytical results are compared with the dynamic field test results and found to be valid to yield quite accurate dynamic responses. Based on the results of this study, the hybrid model, made up of the moving vehicle model for the heaviest power car and the moving force model for the other cars, is quite simple and effective without loosing the accuracy that much. Under the coincidence condition of two trains traveling with resonance velocity in the opposite directions, it is necessary to check not only the dynamic responses of the bridge with one-way traffic but those with two- way coincidence.

Field Tests and Resonance Behavior Corresponding to the Damping Ratio of a High Speed Railroad Bridge (고속철도 교량의 현장실험 및 감쇠비 개선에 따른 공진 시 동적응답의 분석)

  • Kim, Sungil;Kim, Hyunmin;Park, Donguk
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.305-310
    • /
    • 2013
  • In general, it is difficult to measure dynamic responses of a bridge with stepwise increasing speed of a train during commercial service on a high speed railroad. However, before opening the 2nd stage of the Gyeongbu high speed railroad, there was an opportunity for field tests and measurements of the bridge with stepwise increasing speed(from 170km/ h to 315km/h). The measured responses were compared with the results of a developed bridge/train interaction analysis. Although good agreement was found throughout almost the entire range of speeds, relatively large differences were found in the vicinity of the critical speed at which resonance behavior of the bridge occurs. To investigate the cause of this, reanalyses are performed with re-estimated damping ratios from field tests.

Corrosion Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식 피로신뢰성 기반 생애주기비용 분석)

  • Cho, Hyo-Nam;Jeon, Hong-Min;Sun, Jong-Wan;Youn, Man-Keun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.107-113
    • /
    • 2008
  • As it recently appears that LCC (Life Cycle Cost) analysis may be considered as an essential method for economic evaluation of infrastructures. Many researches have been made to assess LCC of each facility based on reasonable methods. However, expected maintenance repair cost must be reasonably estimated to enhance the reliability of LCC analysis through systematic and rational methods. This study is intended to propose a rational approach to reliability-based LCC analysis of high-speed railway steel bridges considering lifetime corrosion and fatigue damage. However in Korea, since high speed railway steel bridges are only recently constructed, no direct statistical data are available for the account of the maintenance cost and thus their maintenance characteristics are not clear yet. In this paper, for the assessment of expected maintenance/repair cost, the fatigue system reliability analysis incorporating the corrosion effect is proposed by considering the corrosion and fatigue damage using measured data of high speed railway steel bridges. A model proposed by Rahgozar, of at for fatigue notch factor considering the corrosion effect is used in order to incorporate the corrosion effect into the fatigue strength reduction and S-N curve. Finally, the effectiveness of LCC model proposed for high-speed railway steel bridges is demonstrated by a numerical example.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.