• Title/Summary/Keyword: 등가하중법

Search Result 154, Processing Time 0.027 seconds

Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load (등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구)

  • Lee, Hyun-Ah;Zeshan, Ahmad;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1811-1820
    • /
    • 2010
  • Most components in the real world show nonlinear response. The nonlinearity may arise because of contact between the parts, nonlinear material, or large deformation of the components. Structural optimization considering nonlinearities is fairly expensive because sensitivity information is difficult to calculate. To overcome this difficulty, the equivalent load method was proposed for nonlinear response optimization. This method was originally developed for size and shape optimization. In this study, the equivalent load method is modified to perform topology optimization considering all kinds of nonlinearities. Equivalent load is defined as the load for linear analysis that generates the same response field as that for nonlinear analysis. A simple example demonstrates that results of the topology optimization using equivalent load are very similar to the numerical results. Nonlinear response topology optimization is performed with a practical example and the results are compared with those of conventional linear response topology optimization.

Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method (등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동)

  • 오병환;전세진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.843-850
    • /
    • 2002
  • Linear transformation theory has been effectively used in the design and analysis of prestressed concrete structures. The underlying assumptions of the theory, which were often overlooked, are investigated in the respect of equivalent load method. As a result, it is found that the same equivalent loading system is produced for all the cases of the linear transformation by the assumptions of the conventional equivalent load method. On the other hand, equivalent loading systems in a strict and accurate sense do not satisfy the classical theories of the linear transformation. Also, it is shown that a little different equivalent loading system from the conventional one is obtained for each linear transformation according to the proposed equivalent load method that is derived from the self-equilibrium property of the tendon-induced forces. Therefore, it can be concluded that the linear transformation theory is valid only when referring to the conventional approximate equivalent load method. The discussions are further extended to the eccentrically located circumferential tendon in the wall of containment structures, where the problem of eccentricity is analyzed also from the view point of the linear transformation.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Methodology for Reliability-based Assessment of Capacity-Rating of Plate Girder Railroad Bridges using Ambient Measurement Data (상시 계측 데이터를 이용한 신뢰성에 기초한 판형 철도교의 내하력 평가법)

  • Cho, Hyo Nam;Choi, Hyun Ho;Lee, Sang Yoon;Sun, Jong Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.187-196
    • /
    • 2003
  • Today, the Working Stress Rating (WSR) is being widely used for the capacity-rating and the safety assessment of railroad steel bridges. Since it cannot incorporate the uncertainties, several studies have been carried out in order to get over the incompleteness of the conventional capacity-rating and safety assessment. A system reliability-based equivalent capacity-rating method, which can evaluate the capacity of existing bridges, has been recently proposed. For more efficient reliability analysis, probabilistic parameters of the random variables in the limit-state models should be reasonably evaluated. Especially, uncertainties for live load effects must be realistically included. In this study, an improved limit-state model was used for the system reliability-based equivalent strength method. This model can incorporate the probabilistic parameters obtained from ambient measurement data. To demonstrate the applicability of the improved system reliability-based equivalent capacity rating method, this was applied to the existing steel plate girder bridge for comparison with the conventional capacity-rating and safety assessment.

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

A Study on Welding Deformation of Thin Plate Block of PCTC by Using Equivalent Load Method (등가하중법을 이용한 PCTC 박판 블록 용접변형에 관한 연구)

  • Kang, Sung-Koo;Yang, Jong-Soo;Kim, Ho-Kyung;Heo, Joo-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.106-111
    • /
    • 2011
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plates should be carefully joined to minimize the welding deformation. In this study, the welding deformation of PCTC which use a thin plate is investigated by using equivalent load method. The analysis model of 10, 11, 12, upper and garage deck is composed of thin plate of 6mm which is susceptible to welding heat. For two different welding sequences, the welding deformation is calculated and its trend is investigated. The influence of gravity on welding deformation is studied.

  • PDF

Development of Programs to Analyze Mechanical Load Data of Wind Turbine Generator Systems and Case Studies on Simulation Data (풍력발전시스템의 기계적 하중 데이터 분석 프로그램 개발과 시뮬레이션 데이터 적용 사례)

  • Bang, Je-Sung;Han, Jeong-Woo;Gil, Kyehwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.789-798
    • /
    • 2013
  • The procedures and relevant programs developed for analyzing mechanical load data of wind turbine generator systems, which are obtained through type certification tests, are verified. The following issues according to IEC 61400-13 are covered in the developed programs: data validation, time series analysis, summary load statistics, generation of fatigue load spectra, and estimation of equivalent loads. A capture matrix for normal power production is generated to determine whether the collected data sets are sufficient to carry out fatigue analysis. Fatigue load spectra are obtained through the rainflow counting method using 50 load ranges; finally, equivalent loads are calculated using different S-N curve slopes, m, according to the relevant materials. Case studies are performed using aero-elastic simulation data of the NREL 5 MW baseline wind turbine with a monopile foundation.